Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/4208
標題: 金屬雙極板之燃料電池組研究
Research of metal bipolar plate fuel cell stack
作者: 邱朝專
Chiou, Chau-Juan
關鍵字: flow channel design
流道設計
metal bipolar plate
PEMFC
electroless plating
金屬雙極板
質子交換膜燃料電池組
化學鍍
出版社: 精密工程學系所
引用: [1] 黃鎮江,燃料電池,滄海書局,2008。 [2] 楊志忠、林頌恩、韋文誠,“燃料電池的發展現況”,科學發展月刊,367期,pp.30-33,2003年7月。 [3] 鄭耀宗、徐耀昇,燃料電池技術進展的現況分析,八十八年節約能源論文發表會論文專輯,第409-422頁,1999。 [4] GM公司http://www.howstuffworks.com [5] http://www.ttadd.com/lunwen/HTML/12235.html [6] 亞太燃料電池公司http://www.apfct.com [7] http://www.hart-isee.com/ [8] P. L. Hentall, J. B. Lakeman, G. O. Mepsted, P. L. Adcock and J. M. Moore, “New materials for polymer electrolyte membrane fuel cell current collectors,” Journal of Power Sources, vol. 80, pp. 235-241, 1999. [9] Y. J. Rong, Y. B. Lian, H. Ming, S. Z. Gang and C. X. Liang, “Study on high power density proton exchange membrane fuel cell,” Chinese Journal of Power Sources, vol. 24, pp. 131-134, 2000. [10] 衣寶廉,燃料電池-原理與運用,五南圖書出版股份有限公司,2005。 [11] 翁芳柏、徐耀昇,燃料電池實驗教材,亞太燃料電池科技股份有限公司,2006。 [12] V. Mehta and J. S. Cooper, “Review and analysis of PEM fuel cell design and manufacturing,” Journal of Power Sources, vol. 114, pp. 32-53, 2003. [13] N. de las Heras, E. P. L. Roberts, R. Langton and D. R. Hodgson, “A review of metal separator plate materials suitable for automotive PEM fuel cells,” Energy and Environmental Science, vol. 2, pp. 206-214, 2009. [14] O. J. Murphy, A. Cisar and E. Clarke, “Low-cost light weight high power density PEM fuel cell stack,” Electrochimica Acta, vol. 43, pp.3829-3840, 1998. [15] M. X. Jie and F. W. Min, “Research progress of bipolar plate for proton exchange membrane fuel cells,” Chinese Battery Industry, vol. 11, pp. 129-134, 2006. [16] V. Gurau, L. Hongtan and S. Kakac, “Two-dimensional model for proton exchange membrane fuel cells,” AIChE Journal, vol. 44, pp. 2410-2422, 1998. [17] S. Um, “Computational fluid dynamics modeling of proton exchange membrane fuel cells,” Journal of the Electrochemical Society, vol. 12, pp. 4485-4493, 2000. [18] T. Berning and N. Djilali, “Three-dimensional computational analysis of transport phenomena in a PEM fuel cell—a parametric study,” Journal of Power Sources, vol. 124, pp. 440-452, 2003. [19] G. H. Guvelioglu and H. G. Stenger, “Main and interaction effects of PEM fuel cell design parameters,” Journal of Power Sources, vol. 2, pp. 424-433, 2006. [20] D. Natarajan and T. V. Nguyen, “Three-dimensional effects of liquid water flooding in the cathode of a PEM fuel cell,” Journal of Power Sources, vol. 115, pp. 66-80, 2003. [21] S. J. Lee, C. H. Huang and Y. P. Chen, “Investigation of PVD coating on corrosion resistance of metallic bipolar plates in PEM fuel cell,” Journal of Materials Processing Technology, vol. 140, pp. 688-693, 2003. [22] 錢苗根、姚壽山、張少宗,現代表面工程技術,機械工業出版社,1999。 [23] V. M. Schmidt, Z. Liu, Z. Mao, B. Wu and L. Wang “Current density distribution in PEFC,” Journal of Power Sources, vol. 141, pp. 205-210, 2005. [24] J. Soler, E. Hontanon and L. Daza “Electrode permeability and flow-field configuration: influence on the performance of a PEMFC,” Journal of Power Sources, vol. 141, pp. 172-178, 2003. [25] W. K. Lee, C. H. Ho, J. W. V. Zee and M. Murthy “The effects of compression and gas diffusion layers on the performance of a PEM fuel cell,” Journal of Power Sources, vol. 84, pp. 45-51, 1999. [26] N. Cunningham, M. Lefevre, G. Lebrun and J. P. Dodelet “Measuring the through-plane electrical resistivity of bipolar plates (apparatus and methods),” Journal of Power Sources, vol. 143, pp. 93-102, 2005. [27] V. A. Paganin, E. A. Ticianelli and E. R. Gonzalez, “Development and electrochemical studies of gas diffusion electrodes for polymer electrolyte fuel cells,” Journal of Applied Electrochemistry, vol. 26, pp. 297-304, 1996. [28] D. Chu and R. Jiang, “Comparative studies of polymer electrolyte membrane fuel cell stack and signal cell,” Journal of Power Sources, Vol. 80, pp. 226-234, 1999. [29] S. Y. Cha, J. M. Song and W. E. Lee, “Performance of proton exchange membrane fuel cell electrodes prepared by direct deposition of untrathin platinum on the membrane surface,” Journal of Applied Electrochemistry, vol. 28, pp. 1413-1418, 1998. [30] S. Srinivasan, E. A. Ticianelli, C. R. Derouin and A. Redondo, “Advances in solid polymer electrolyte fuel cell technology with low platinum loading electrodes,” Journal of Power Source, vol. 22, pp. 359-357, 1988. [31] 鄭煜騰、鄭耀宗, 質子交換膜型燃料電池的製作技術, 能源季刊, 27, 第118-131頁, 1997。 [32] S. Zhingang, Y. Baolian and H. Ming, “Bifunctional electrodes with a thin catalyst layer for ‘unitized’ proton exchange membrane regenerative fuel cell,” Journal of Power Source, vol.79, pp. 82-85, 1999. [33] Y. G. Chun, C. S. Kim, D. H. Peck and D. R. Shin, “Performance of a polymer electrolyte membrane fuel cell with thin film catalyst electrodes,” Journal of Power Source, vol. 71, pp. 174-178, 1998. [34] M. Hogarth, P. Christensen, A. Hamnett and A. Shukla, “The design and construction of high-performance direct methanol fuel cells,” Journal of Power Sources, vol. 69, pp.113-124, 1997. [35] M. S. Wilson and S. Gottesfeld, “Thin-film catalyst layers for polymer electrolyte fuel-cell electrodes,” Journal of Applied Electrochemistry, vol. 22, pp. 1-7, 1997. [36] A. S. Arico, P. Creti, N. Giordano, V. Antonucci, P. L. Antonucci and A. Chuvilin, “Chemical and morphological characterization of a direct methanol fuel cell based on a quaternary Pt-Ru-Sn-W/C,” Journal of Applied Electrochemistry, vol. 26, pp. 959-967, 1996. [37] S. Mukerjee, S. Srinivasan and A. J. Appleby, “Effect of sputtered film of platinum on low platinum loading electrodes on electrode kinetics of oxygen reduction in proton exchange membrane fuel cells,” Electrochimica Acta, vol. 38, pp.1661-1669, 1993. [38] K. Scott, W. M. Taama and P. Argyropoulos, “Material aspects of the liquid feed direct methanol fuel cell,” Journal of Applied Electrochemistry, vol. 28, pp. 1389-1397, 1998. [39] M. Uchida, Y. Aoyama, N. Eda and A. Ohta, “New Preparation Method for Polymer-Electrolyte Fuel Cells,” Journal of the Electrochemical Society, vol. 142, pp. 463-468, 1995. [40] M. S. Wilson, J. A. Valerio and S. Gottesfeld, “Low platinum loading electrodes for polymer electrolyte fuel cells fabricated using thermoplastic ionomers,” Electrochimica Acta, vol. 40, pp. 355-363, 1995. [41] S. Q. Song, Z. X. Liang, W. J. Zhou, G. Q. Sun and Q. Xin, “Direct methanol fuel cells: The effect of electrode fabrication procedure on MEAs structure properties and cell performance,” Journal of Power Sources, vol. 145, pp. 495-501, 2005. [42] E. Passalacqua, F. Lufrano, G. Squadrito and L. Giorgi, “Nafion content in the catalyst layer of polymer electrolyte fuel cells: effects on structure and performance,” Electrochimica Acta, vol. 6, pp. 799-805, 2001. [43] A. Fischer, J. Jindra and H. Wendt, “Porosity and catalyst utilization of thin layer cathodes in air operated PEM-fuel cells,” Journal of Applied Electrochemistry, vol. 28, pp. 277-282, 1998. [44] F. Lufrano, E. Passalacqua, G. Squadrito, A. Patti and L. Giorgi, “Improvement in the diffusion characteristics of low Pt-loaded electrodes for PEFCs,” Journal of Applied Electrochemistry, vol. 29, pp. 445-448, 1999. [45] E. Passalacqua, G. Squadrito and F. Lufrano, “Effects of the diffusion layer characteristics on the performance of polymer electrolyte fuel cell electrodes,” Journal of Applied Electrochemistry, vol. 31, pp. 449-454, 2001. [46] E. Antolini, R. R Passos and E.A. Ticianelli, “Effects of the carbon powder characteristics in the cathode gas diffusion layer on the performance of polymer electrolyte fuel cells,” Journal of Power Sources, vol. 109, pp. 477-482, 2002. [47] M. Neergat and A. K. Shukla, “Effect of diffusion-layer morphology on the performance of solid-polymer-electrolyte direct methanol fuel cells,” Journal of Power Sources, vol. 104, pp.289-294, 2002. [48] S. K. Chang, D. Y. Kim and H. K. Lee, “Influence of pore-size distribution of diffusion layer on mass-transport problems of proton exchange membrane fuel cells,” Journal of Power Sources, vol. 108, pp.185-191, 2002. [49] S. Gamburzev and A. J. Appleby, “Recent progress in performance improvement of the proton exchange membrane fuel cell (PEMFC),” Journal of Power Sources, vol. 107, pp. 5-12, 2002. [50] R. Kirchain, I. Bar-On and R. Roth, “Technical cost analysis for PEM fuel cells,” Journal of Power Sources, vol. 109, pp.71-75, 2002. [51] Y. Hung, K. M. El-Khatib and H. Tawfik, “Testing and evaluation of aluminum coated bipolar plates of pem fuel cells operating at 70 °C,” Journal of Power Sources, vol. 163, pp. 509-513, 2006. [52] J. Evertz, M. Gunthart, “Structural concepts for lightweights and cost effective end plates for fuel cell stacks,” 2nd European PEFC Forum, 2003. [53] S. J. Hu, L. Zhang, Y. Liu, H. Song, S. Wang and Y. Y. Zhou, “Estimation of contact resistance in proton exchange membrane fuel cells,” Journal of Power Sources, vol. 162, pp. 1165-1171, 2006. [54] J. Ihonen, M. Mikkola and G. Lindbergh, “Flooding of Gas Diffusion Backing in PEFCs Physical and Electrochemical Characterization,” Journal of the Electrochemical Society, vol. 151, pp.A1152-A1161, 2004. [55] P. Zhou, C. W. Wu and G. J. Ma, “Influence of clamping force on the performance of PEMFCs,” Journal of Power Sources, vol. 163, pp.874-881, 2007. [56] W. H. Zhu , R. U. Payne, D. R. Cahela and B. J. Tatarchuk, “Uniformity analysis at MEA and stack Levels for a Nexa PEM fuel cell system,” Journal of Power Sources, vol. 6, pp. 231-238, 2004. [57] J. Ge, A. Higier and H. Liu, “Effect of gas diffusion layer compression on PEM fuel cell performance,” Journal of Power Sources, vol. 159, pp.922-927, 2006.
摘要: 本研究主要是適用於低溫運行之燃料電池組,金屬鋁作為雙極板材質,CNC於雙極板上製造出流道,金屬雙極板具有2mm高度與2mm寬度的流道,並且於雙極板表面以化學鍍方式鍍上10μm以內的抗腐蝕金屬,利用低導熱係數電木作為進出氣口側板,反應面積5×5cm2之MEA,組裝成質子交換膜燃料電池組。 本研究成功的組裝成金屬雙極板燃料電池組,最大功率密度為4933.6mW/cm2和最大電流密度為620mA/cm2,金屬雙極板燃料電池組的效能穩定,達到永續發展再生能源的目的。
The purpose of this current study is to assemble a low-temperature operating fuel cell stack whose metal bipolar plates are made of aluminum and flow channels on the metal bipolar plates are created by CNC. The flow channels on the bipolar plates are 2 mm high and 2mm wide. The metal bipolar plates are plated with corrosion-resistant metal, within 10μm, by electroless plating. In addition to the metal bipolar plates, low thermal conductivity of bakelite as side boards, allowing the air in and out, and MEA whose response area is 5×5cm2 are used to assemble a PEMFC (Proton Exchange Membrane Fuel Cell). This study successful assembled the metal bipolar plate fuel cell stack with a maximum power density of 4933.6mW/cm2 and a maximum current density of 620mA/cm2. The performance of the cell stack assembled in this study is stable and consistent, achieving the purpose of developing renewable energy which can be sustained forever. Key words: flow channel design, metal bipolar plate, PEMFC, electroless plating
URI: http://hdl.handle.net/11455/4208
其他識別: U0005-0802201014213700
文章連結: http://www.airitilibrary.com/Publication/alDetailedMesh1?DocID=U0005-0802201014213700
Appears in Collections:精密工程研究所

文件中的檔案:

取得全文請前往華藝線上圖書館



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.