請用此 Handle URI 來引用此文件: http://hdl.handle.net/11455/4210
標題: 成長於砷化鎵基板之砷化銦鎵太陽能電池之研究
Study on InGaAs/GaAs Solar Cells
作者: 郭家豪
Kuo, Chia-Hao
關鍵字: Solar cell
InGaAs crystalline film
GaAs substrate
出版社: 精密工程學系所
引用: [1] D. A. Jenny, J. J. Loferski, and P. Rappaport , “Photovoltaic Effect in GaAs p-n Juntions and Solar Energy Conversion”, Physical Review, vol. 101, 1208, 1956. [2] Z. H. I. Alferov, V. M. AndreeV, M. B. Kagan, I. I. Protasov, “Solar cells based on heterojuntion p-AlGaAs-n-GaAs”, Sov. Phys. Semicond , vol. 4, 303, 1970. [3] L. D. Partain(Editor), “Solar Cells and Their Applications”, John Wiley&Sons, Inc., 99, 1995. [4] F. Dimroth, U. Schubert and A.W. Bett, “ 25.5% efficient Ga0.35In0.65P / Ga0.83In0.17As tandem solar cells grown on GaAs substrates”, IEEE Electron Dev. Lett., vol. 21, 209, 2000. [5] D. C. Law, et al., “Future technology pathways of terrestrial III–V multijunction solar cells for concentrator photovoltaic systems”, Solar Energy Mat. and Solar Cells, 2008(in press). [6] C. M. Fetzer et al., “High-efficiency metamorphic GaInP/GaInAs/Ge solar cells grown by MOVPE”, J. Cryst. Growth, vol. 261, 341, 2004. [7] R. R. King et al., “ Advances in high-efficiency III-V multi-junction solar cells”, Advances in OptoElectronics, Article ID 29523, 8, 2007. [8] R. R. King, D. C. Law, K. M. Edmondson, et al., “40% efficient metamorphic GaInP/GaInAs/Ge multijunction solar cells”, Appl. Phys. Lett., vol. 90, 3, 2007. [9] M. Yamaguchi, T. Takamotob and K. Araki, “Super high-efficiency multi-junction and concentrator solar cells”, Solar Energy Mat. and Solar Cells, vol. 90, 3068, 2006. [10] T. Takamoto, T. Agui, E. Ikeda, H. Kurita, et al., “High-efficiency InGaP/In0.01Ga0.99As tandem solar cells lattice-matched to Ge substrates”, Solar Energy Mat. and Solar Cells, vol. 66, 511, 2001. [11] M. A. Green, K. Emery, Y. Hisikawa, and W. Warta, “ Solar cell efficiency tables”, Progress in photovoltaics: Research and Applications, vol. 15, 425, 2007. [12] A. W. Bett, R. Adelhelm, C. Agert, R. Beckert, F. Dimroth,U. Schubert, “Advanced solar cells substrates grown by MOVPE”, Solar Energy Mat. and Solar Cells , vol. 66, 541, 2001. [13] S. R. Kurtz, A. A. Allerman, E. D. Jones, J. M. Gee, J. J. Banas, and B. E. Hammons, “InGaAsN/GaAs heterojunction for multijunction solar cells”, Appl. Phys.Lett., vol. 75, 729, 1999. [14] F. Dimroth, C. Baur, A. W. Bett, K. Volz, and W. Stolz, “Comparison of dilute nitride growth on a single and 8×4 inch multiwafer MOVPE system for solar cell applications”, J. Cryst. Growth, vol. 272, 726, 2004. [15] M. R. Lueck, C. L. Andre, A. J. Pitera, M. L. Lee, E. A. Fitzgerald, and S. A. Ringel, “Dual junction GaInP/GaAs solar cells grown on metamorphic SiGe/Si Substrates with high open circuit voltage” , IEEE Electron Dev. Lett., vol. 27, 142, 2006. [16] C. L. Andre, J. A. Carlin, J. J. Boeckl, D. M. Wilt, M. A. Smith, A. J. Pitera, M. L. Lee, E. A. Fitzgerald, and S. A. Ringel, “Toward a III-V multijunction space cell technology on Si”, IEEE Trans. Electron Dev., vol. 52, 1055, 2005. [17] 陳建隆, “發光二極體之原理與製程”, 全華出版社, 第一章26, 台灣, 2006. [18] 羅吉宗, “薄膜科技與應用”, 全華出版社, 第五章7, 台灣, 2005. [19] K. N. Tu, J. W. Mayer, and L. C. Feldman, “Electronic Thin Film Science for Electronic Engineers and Materials Scientist”, Macmillan, 1992. [20] P. Kightley, P. J. Goodhew, “A mechanism of misfit dislocation reation for GaInAs strained layers grown onto off-axis GaAs substrates”, J. Cryst. Growth , vol. 112, 359, 1991. [21] J. E. Ayers, “The measurement of threading dislocation densities in semiconductor crystals by X-ray diffraction”, J. Cryst. Growth, vol. 135, 71, 1994. [22] 鄭信民,X光繞射簡介,工業材料雜誌181期, 100, 2002. [23] 鍾明光,X光倒易空間圖譜技術分析矽鍺異質磊晶材料應變,科儀新知第二十九卷第一期, 91, 2007. [24] M. P. Thekackara, “The Solar Constant and the Solar Spectrum Measurement from a Research Aircraft”, NASA Technical Report, R-351, 1970. [25] S. M. Sze , “Semiconductor Devices Physics and Technology”, 478, 2003. [26] 莊家琛, “太陽能工程-太陽電池篇”, 全華出版社, 第二章 1, 台灣, 1997. [27] 蔡進譯, 超高效率陽電池, 物理雙月刊第廿七卷五期, 701, 2005. [28] D. A. Neamen, “Semiconductor Physics and Devices”, the McGraw Hill Companies , 742, 2002. [29] 蔡雨利、洪瑞華、吳志宏、趙志剛, 光學工程, 中華民國光學工程學會出版, vol. 100 , 1, 2007. [30] S. Adachi, “Optical properties of AlxGa1-xAs alloys”, Physical Rev. B 38 , 12345, 1988 . [31] L. L. Kazmerski, “Solar photovoltaics R&D at the tipping point: A 2005 technology overview”, J. Electron Spec. and Rel. Phenomena, vol. 150, 105, 2006. [32]http://www.ee.ucla.edu/~wu/ee174/images/Bandgap-vs-Lattice%20Constant.jpg. [33] 紀國鐘、蘇炎坤, “光電半導體技術手冊”, 台灣電子材料與元件協會出版, 40, 台灣, 2002. [34] 戴寶通、鄭晃忠, “太陽能電池技術手冊”, 台灣電子材料與元件協會出版, 182, 台灣, 2008. [35] M. J. Ludowise, “Metalorganic chemical vapor deposition of III-V semiconductors”, J. Appl. Phys, vol. 58, R34, 1985. [36] O. Feron et al., “MOCVD of InGaAsP , InGaAs and InGaP over InP and GaAs substrates: distribution of composition and growth rate in a horizontal reactor”, Appl. Surf. Sci., vol. 159, 318, 2000. [37] 陳立俊, 材料電子顯微鏡學, 國家實驗研究院儀器科技研究中心, 285, 台灣, 1990. [38] 汪建民, “材料分析”, 中國材料科學學會, 267, 台灣, 1998.
摘要: 本論文利用有機金屬化學氣相沉積法在偏2°以及偏15°之砷化鎵基板上,由(100)往(011)傾斜成長砷化銦鎵薄膜,其中銦含量介於0到0.2之間。主要發現砷化銦鎵的磊晶品質取決於銦含量以及基板切角。將砷化銦鎵成長於偏15°之砷化鎵基板,會在砷化銦鎵薄膜與砷化鎵基板之間形成大量的失配缺陷,造成太陽電池光電特性衰減。從X光繞射圖譜分析中得知,成長於偏15°之砷化鎵基板之砷化銦鎵薄膜,易造成繞射峰的強度變弱及半高寬變寬的現像,而此現像通常發生於高銦含量砷化銦鎵薄膜。為了改善成長砷化銦鎵於砷化鎵基板晶格常數失配造成的缺陷密度,則利用砷化銦鎵漸變緩衝層來降低失配缺陷密度,並應用於砷化銦鎵太陽電池元件中。砷化銦鎵太陽電池則針對PN結構及PIN結構進行比較,並分別成長於偏2°及偏15°之砷化鎵基板。在PN結構的元件特性比較中發現,成長於偏2°的砷化鎵基板的太陽電池元件優於偏15°之砷化鎵基板的太陽電池元件。此外,造成偏15°之砷化鎵基板的太陽電池元件特性較差的主因,是因為在砷化銦鎵漸變緩衝層與太陽電池主動層的介面中含高密度的失配缺陷,因而造成元件特性變差。將元件應用於PIN結構時,則發現偏15°的元件特性與偏2°的元件特性相近,主要原因是由於加入本質層後,使得電子電洞對分離的能力增加了,進而改善使用偏15°之砷化鎵基板應用於太陽電池元件的缺點。
This paper presents the growth of InxGa1-xAs (0<x<0.2) films quality grown on GaAs substrate with different miscut angle (2-off and 15-off), (100) toward (011) by metal-organic chemical vapor deposition. The crystalline quality of InxGa1-xAs was found to strongly depend on indium content and substrate misorientation. The growth of InxGa1-xAs on (100) GaAs substrate with 15 misorientation toward (011) results in the formation of large amount of misfit dislocations in the interface between InxGa1-xAs and GaAs substrate, which deteriorates photovoltaic performance of solar cells. From the x-ray diffractometer analysis, the diffraction peak of InxGa1-xAs layer grown on (100) GaAs substrate with 15misorientation toward (011) was weak and very broad for high-indium composition (x>0.1). The InxGa1-xAs graded buffer(x: 0.04 ~ 0.15) was used to reduce misfit dislocation density for solar cell application. The In0.16Ga0.84As solar cells with PN and p-i-n structure were grown on 2and 15-off GaAs substrates. It was found that the photovoltaic performance of In0.16Ga0.84As solar cell grown on 2-off GaAs substrate was better than that of In0.16Ga0.84As grown on a 15-off GaAs substrate. The poor photovoltaic properties of the In0.16Ga0.84As solar cell grown on 15-off GaAs substrate could be due to the highly strain relaxation in active layer of solar cell, which causes the high dislocation density at the initial active layer/InxGa1-xAs graded layer interface. In order to improve the photovoltaic performance of In0.16Ga0.84As solar cell grown on 15-off GaAs substrate, the p-i-n structure was used. The performance of In0.16Ga0.84As solar cell grown on a 15-off GaAs substrate was closed to In0.16Ga0.84As solar cell grown on 2-off GaAs substrate after intrinsic layer added. The increased photo current of In0.16Ga0.84As solar cell grown on a 15-off GaAs substrate was due to intrinsic layer increases the separation ability of electron-hold pair in the solar cell structure.
URI: http://hdl.handle.net/11455/4210
其他識別: U0005-1108200916283100
文章連結: http://www.airitilibrary.com/Publication/alDetailedMesh1?DocID=U0005-1108200916283100


在 DSpace 系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。