Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/4211
標題: 矽薄膜太陽電池之優化設計與實作研究
Design and Fabrication of Silicon Thin Film Solar Cells
作者: 王家堃
Wang, Chan-Kun
關鍵字: microcrystalline silicon film
微晶矽膜
hot-wire CVD
device simulation
thin film solar cell
熱燈絲化學氣相沉積法
元件模擬
薄膜太陽電池
出版社: 精密工程學系所
引用: 【1】 《科學發展》2005年6月,390期,50~55頁。 【2】 《科學發展》2002年1月,349期,22~29頁。 【3】 京都議定書 (附錄1) http://unfccc.int/essential_background/kyoto_protocol/items/1678.php 【4】 Q.Wang, E.Iwaniczko, Y.Xu, W.Gao, B.P.Nelson, A.H.Mahan, R.S.Crandall, H.M.Branz, “Efficient 18 Å/s Solar Cells with All Silicon Layers Deposited by Hot-Wire Chemical Vapor Deposition”, Mat. Res. Soc. Symp. Proc. 609 (2000 ) A4.3.1. 【5】 維基百科 - 太陽能 (附錄2) http://zh.wikipedia.org/w/index.php?title=%E5%A4%AA%E9%99%BD%E8%83%BD&variant=zh-tw. 【6】 謝銘洋,徐宏昇,陳哲宏,陳逸南,專利法解讀,元照出版有限公司,2002。 【7】 莊嘉琛,太陽能工程-太陽電池篇,全華科技圖書出版,2003。 【8】 T. Markvart, “Solar Electricity,” John Wiley& Sons, 2000. 【9】 D. A. Neamen, “Semiconductor Physics and Devices,” The McGraw Hill Companies, 1992. 【10】 S. O. Kasap, “Optoelectronics and Photonics Principles and Practices, ” Pearson Prentice Hall Companies, 2001. 【11】 B. Nelson, E. Iwaniczko, A. H. Mahan, Q. Wang, Y. Xu, R. S. Crandall and H. M. Branz, “High-Deposition Rate a-Si:H n-i-p Solar Cells Grown by HWCVD,” Thin Solid Films, vol.395, pp. 292-297, Sep. 2001. 【12】 H. Wiesmann, A. K. Ghosh, T. McMahon, M. Strongin, “a-Si : H Produced by High-Temperature Thermal Decomposition of Silane,” J. Appl. Phys., vol. 50, pp. 3752-3754, May 1979. 【13】 毛信元,以熱燈絲化學氣相沉積法製作複晶矽薄膜及特性分析,國立中興大學材料工程學研究所碩士論文,2004。 【14】 H. Matsumura and H. Tachibana, “Amorphous Silicon Produced by a New Thermal Chemical Vapor Deposition Method Using Intermediate Species SiF2,” J. Appl. Phys., vol. 47, pp. 833-835, Oct. 1985. 【15】 A. H. Mahan, J. Carapella, B. P. Nelson, and R. S. Crandall, “Deposition of Device Quality, Low H Content Amorphous Silicon,” J. Appl. Phys., vol.69, pp.6728-6730, May 1991. 【16】 H. Matsumura, “Formation of Polysilicon Films by Catalytic Chemical Vapor Deposition (Cat-CVD) Method,” Jpn. J. Appl. Phys., vol. 30, pp.1522-1524, Aug. 1991. 【17】 M. Heintze, R. Zedlitz, H. Wanka, and M. Schubert, “Amorphous and Microcrystalline Silicon by Hot Wire Chemical Vapor Deposition,” J. Appl. Phys., vol. 79, pp. 2699-2706, Mar. 1996. 【18】 H. Matsumura, “InGaAsP/InP Optical Switches Using Carrier Induced Refractive Index Change,” Appl. Phys. Lett., vol. 51, pp. 804-805, Mar. 1987. 【19】 Hideki Matsumura, “Silicon Nitride Produced by Catalytic Chemical Vapor Deposition Method,” J. Appl. Phys., vol. 66, pp. 3612-3517, Oct. 1989. 【20】 H. Matsumura, “Low Temperature Deposition of Silicon Nitride by the Catalytic Chemical Vapor Deposition Method,” Jpn. J. Appl. Phys., vol. 28, pp. 2157-2161, Oct. 1989. 【21】 A. Izumi, A. Masuda, S. Okada and H. Matsumura, “Novel Surface Cleaning of GaAs and Formation of High Quality SiNx Films by Cat-CVD Method,” Institute of Physics Conference Series, No. 155, pp. 343-346, Apr. 1997. 【22】 A. Izumi, A. Masuda and H. Matsumura, “Surface Cleaning and Nitridation of Compound Semiconductors Using Gas-Decomposition Reaction in Cat-CVD Method,” Thin Solid Films, vol. 343, pp. 528-531, Apr. 1997. 【23】 A. Izumi, S. Sohara, M. Kodo and H. Matsumura, “Low-Temperature Oxidation of Silicon Surface Using a Gas Mixture of H2 and O2 in a Catalytic Chemical Vapor Deposition System,” Electrochem. Solid State Lett., vol. 2, pp. 388-389, Aug. 1999. 【24】 A. Izumi, H. Sato and H. Matsumura, “Electrical and Structural Properties of Catalytic-Nitrided SiO2 Films,” Gate Stack and Silicide Issues in Silicon Processing II, Materials Research Society Symposium Proceedings, vol. 670, pp. K7.8.1-K7.8.6, May 2001. 【25】 S. Matsumoto, Y. Sato, M. Tsutsumi and N. Setaka, “Vapor Deposition of Diamond Particles From Methane,” Jpn. J. Appl. Phys., vol. 21, pp. L183-L185, Apr. 1983. 【26】 K. Saito, Y. Uchiyama and K. Abe, “Preparation of SiO2 Thin Films Using the Cat-CVD Method,” Thin Solid Films, vol. 430, pp. 287-291, Apr. 2003. 【27】 U. Weber, M. Koob, R. O. Dusane, C. Mukherjee, H. Seitz und B. Schröder, “a-Si:H Based Solar Cells Entirely Deposited by Hot-Wire CVD,” Proceedings of the 16th European Photovoltaic Solar Energy Conference, pp. 286-289, Mar. 2000. 【28】 B. Nelson, E. Iwaniczko, A. H. Mahan, Q. Wang, Y. Xu, R. S. Crandall and H. M. Branz, “High-Deposition Rate a-Si:H n-i-p Solar Cells Grown by HWCVD,” Thin Solid Films, vol.395, pp. 292-297, Sep. 2001. 【29】 http://www.nedo.go.jp/kankobutsu/nenshi/3color/1999_2000/jigyo/03daigaku3.html. 【30】 U. Weber, M. Koob, R. O. Dusane, C. Mukherjee, H. Seitz und B. Schröder, “a-Si:H Based Solar Cells Entirely Deposited by Hot-Wire CVD,” Proceedings of the 16th European Photovoltaic Solar Energy Conference, pp. 286-289, Oct. 2000. 【31】 K. Inoue, S. Tange, K. Tonokure, M. Koshi, “Catalytic Decomposition of SiH4 on a Hot Filament,” Thin Solid Films, vol.395, pp. 42-46, Sep. 2001. 【32】 M. Koshi, F. Tamura, H. Matsui, “Rate Constants for the Reactions of Hydrogen Atoms with SiHnF4 − n (n = 4, 3, 2),” Chem. Phys. Lett. vol.173, pp. 235-240, Oct. 1990. 【33】 H. Matsumura, “Study on Catalytic Chemical Vapor Deposition Method to Prepare Hydrogenated Amorphous Silicon,” J. Appl. Phys., vol. 65, pp. 4396-4402, Jun. 1989. 【34】 A. Gallagher, “Some Physics and Chemistry of Hot-Wire Deposition,” Thin Solid Films, vol. 395, pp. 25-28, Sep. 2001. 【35】 E. C. Molenbroek, “Deposition of Hydrogenated Amorphous Silicon with the Hot Wire Technique,” Ph.D.-Thesis, University of Colorado, Apr. 1995. 【36】 B. Y. Tsui, S. S. Lin, C. S. Tsui, C. C. Hsia, “Plasma Charging Damage During Contact Hole Etch in High-Density Plasma Etcher,” Microelectronics Reliability, vol. 40, pp. 2039-2046, Dec. 2000. 【37】 Y. J. Lee, S. W. Hwang, G. Y. Yeom, J. W. Lee, J. Y. Lee, “Etch-Induced Damage in Single Crystal Si Trench Etching by Planar Inductively Coupled Cl2/N2 and Cl2/HBr Plasmas,” Thin Solid Films, vol. 341, pp. 168-171, Mar. 1999. 【38】 J. Lossen, S. Klein, F. Finger, “Optimization of the Filament Arrangement at Constant Radiant Heat in HW-CVD for the Preparation of Compact μc-Si:H at High Deposition Rates,” Thin Solid Films, vol. 451-452, pp. 531-535, Mar. 2004. 【39】 H. Matsumura, “Formation of Polysilicon Films by Catalytic Chemical Vapor Deposition (Cat-CVD) Method,” Jpn. J. Appl. Phys., vol.30, L1522-L1524, Aug. 1991. 【40】 M. Heintze, R. Zedlitz, H. Wanka, and M. Schubert, “Amorphous and Microcrystalline Silicon by Hot Wire Chemical Vapor Deposition,” J. Appl. Phys., vol. 79, pp. 2699-2706, Mar. 1996. 【41】 E. C. Molenbroek, Ph.D.-Thesis, University of Colorado, 1995. 【42】 H. Sunayama, K. Yamada, M. Karasawa and K. Ishibash, “Preparation of Poly-Si Films by Cat-CVD for Thin Film Transistor,” Thin Solid Films, vol. 430, pp. 226-229, Apr. 2003. 【43】 Z. Iqbal, S. Veprek, A.P. Webb, P. Capezzuto, “Raman Scattering from Small Particle Size Polycrystalline Silicon,” Solid State Commum., vol. 37, pp. 993-996, Mar. 1981.
摘要: 本論文乃以Crosslight模擬軟體進行單一接面(pin)微晶矽薄膜太陽電池結構之最佳化設計,並以熱燈絲化學氣相沈積系統實際製作微晶矽薄膜太陽電池。Crosslight是一種元件與製程方面的電腦輔助設計與模擬軟體,可以快速的設計太陽電池各層的特性並得到模擬的元件結果。熱燈絲化學氣相沈積是一種薄膜沉積技術,熱燈絲化學氣相沈積相較於電漿輔助化學氣相沉積擁有許多優點,如沈積速度快、大面積沈積、矽膜含氫量低、設備成本低等等,是適合開發研究製作太陽電池元件的一種技術。過去幾年,本實驗室利用熱燈絲化學氣相沈積矽薄膜的技術已發展成熟,也完成矽膜之結構、光學及電氣特性分析。在本研究中,透過Crosslight模擬軟體對元件結構進行優化工作,透過不同的濃度與摻雜量模擬,可得到最佳的模擬元件轉換效率為12.12 %(開路電壓0.71 V、短路電流21.31 mA/cm2、填充因子77%)。透過此元件的結構,我們使用熱燈絲化學氣相沈積試圖實現模擬的結果,計畫首先針對熱燈絲化學氣相沈積所製作的各層之光電材料特性進行分析,尋求最佳的製程參數後,再進行元件製作,目前產出之最佳的p-i-n 微晶矽薄膜太陽電池(1cm×1cm)之轉換效率為3.98 % (開路電壓0.49 V、短路電流13.5 mA/cm2、填充因子58%),有關微晶矽薄膜太陽電池模擬值與實驗值之可能差異因素也將在本論文中一併討論。
In this thesis, micro-crystalline silicon thin film solar cells are designed using 3D computer simulation software, Crosslight, and are fabricated using hot-wire chemical vapor deposition technique (HWCVD). Crosslight is a kind of 3D computer simulator for optoelectronic device and process. This simulator can design material properties of each layers in solar cell and quickly find out the finally device characteristics. It is indispensable tools to reduce the process cost and research time. In the other hand, HWCVD is a popular technique for producing silicon thin film. It has many advantages such as high deposition rate, large area deposition, silicon films with low hydrogen content and low equipment cost compare with plasma-enhanced chemical vapor deposition. In other words, HWCVD is more suitable for thin films solar cell fabrications. In the past few years, we had worked hard in silicon thin film deposition using HWCVD. Some important properties of HWCVD silicon films like micro-structural, optical and electrical of silicon films were reported. In this research, the device structure and process of micro-crystalline silicon thin film solar cells had be studied. We achieved the p-i-n microcrystalline silicon thin-film solar cell (1cm 1cm) with conversion efficiency of 3.98 % (Voc=0.49 V, Isc=13.5 mA, FF=58%) by using single chamber HWCVD system. But it still shows much worse result than the simulation result (12.12%). More details of the discrepancy between experimental and simulation data will be discussed in this thesis.
URI: http://hdl.handle.net/11455/4211
其他識別: U0005-1108200920474800
文章連結: http://www.airitilibrary.com/Publication/alDetailedMesh1?DocID=U0005-1108200920474800
Appears in Collections:精密工程研究所

文件中的檔案:

取得全文請前往華藝線上圖書館



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.