Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/4216
標題: 製作圖案化布拉格反射鏡之近紫外光發光二極體 之研製
Fabrication of InGaN Near-UV Light Emitting Diodes with a Patterned DBR Structure
作者: 蔡瀅全
Tsai, Ying-Chiuan
關鍵字: GaN
氮化銦鎵
light-emitting diode (LED)
laser lift-off
precision electroplate
紫外光發光二極體
布拉格反射鏡
差排
出版社: 精密工程學系所
引用: [1]K. H. Kim, Z. Y. Fan, M. Khizar, M. L. Nakarmi, J. Y. Lin, and H.X. Jiang, “AlGaN-based ultraviolet light-emitting diodes grown on AlN epilayers,” Appl. Phys. Lett. 85, 4777 (2004). [2]F. Huet, M. A. di Forte-Poisson, A. Romann, M. Tordjman, J. di Persio, and B. Pecz, “Modelling the defect structure in GaN MOCVD thin films by X-ray diffraction,” Mater. Sci. Eng., B 59, 198 (1999). [3]劉如熹,“白光發光二極體製作技術-由晶粒金屬化至封裝” 第一版,全華出版社,台北,台灣, pp.16-22,2008. [4]S. Nakamura, M. Senoh, S. Nagahama, N. Iwasa, T. Yamada, T. Matsushita, Y. Sugimoto, and H. Kiyoku, “High-power, long-lifetime InGaN multi-quantum-well-structure laser diodes”, Jpn. J. Appl. Phys., 36, 1568 (1997). [5]T. Shibata, H. Sone, K. Yahashi, M. Yamaguchi, K. Hiramatsu, N. Sawaki, and N. Itoh, “Hydride vapor-phase epitaxy growth of high-quality GaN bulk single crystal by epitaxial lateral overgrowth,” J. Cryst. Growth,189, 67 (1998). [6] P. Fini, L. Zhao, B. Moran, H. Marchand, J. P. Ibbetson, M. Hansen, S. P. DenBaars, U. K. Mishra, and J. S. Speck , “High-quality coalescence of laterally overgrown GaN stripes on GaN/sapphire seed layers,” Appl. Phys. Lett., 75, 1706 (1999). [7] X. Li, S. G. Bishop, and J. J. Coleman, “GaN epitaxial lateral overgrowth and optical characterization,” Appl. Phys. Lett., 73, 1179 (1998). [8] S. J. Chang, Y. C. Lin, Y. K. Su, C. S. Chang, T. C. Wen, S. C. Shei, J. C. Ke, C. W. Kuo, S. C. Chen, and C. H. Liu, “Nitride-based LEDs fabricated on patterned sapphire substrates,” Solid-State Electron., 47, 1539 (2003). [9] 陳隆建,“發光二極體之原理與製程” 第二版,全華出版社,台北,台灣, pp. 7-10,2006. [10]李正中,“薄膜光學與鍍膜技術” 第五版,藝軒出版社,台北,台灣, pp.159-164,2006. [11]陳宏彬, “電子槍熱蒸鍍紫外光薄膜之研究,” 元智大學電機工程研究所碩士論文, 2003.6 [12]吳學維, “在藍寶石基板進行低差排密度氮化鎵磊晶膜之製程開發與研特性究,” 中興大學材料科學與工程研究所碩士論文, 2008.7 [13] Bhattacharya,“Semiconductor Optoelectric Devices”, Prentice Hall. [14] K. N. Tu, J. W. Mayer, and L. C. Feldman, “Electronic thin film science for electronic engineers and materials scientist,” Macmillan, New York. [15]李政鴻, “AlInGaN UV LED 元件製作,” 電光先鋒, 台北, pp.1-5,2007. [16]D. Morita, M. Yamamoto, K. Akaishi, K. Matoba, K. Yasutomo, Y. Kasai, M. Sano, S. I. Nagahama, and T. Mukai, “Watt-class high-output-power 365 nm ultraviolet light-emitting diodes,” Jpn. J. Appl. Phys., 43, 5945 (2004). [17] 鄭明欣, 林宏旻, 鐘明光, “X光倒易空間圖譜技術分析矽鍺異質磊晶材料的應變,” 科儀新知,第29卷 第1期, 91頁 (2007). [18] S. Porowski, and I. Grzegory, “Thermodynamical properties of III-V nitrides and crystal growth of GaN at high N2 pressure,” J. Cryst. Growth, 178, 174 (1997). [19] M. Haino, M. Yamaguchi, H. Miyake, A. Motogaito, K. Hiramatsu, Y. Kawaguchi, N. Sawaki, Y. Iyechika, and T. Maeda, “Buried tungsten metal structure fabricated by epitaxial-lateral-overgrown GaN via low-pressure metalorganic vapor phase epitaxy,” Jpn. J. Appl. Phys., 39, 449(2000). [20] K. Tadatomo, H. Okagawa, Y. Ohuchi, T. Tsunekawa, Y. Imada, M. Kato, and T. Taguchi, “High output power InGaN ultraviolet light-emitting diodes fabricated on patterned substrates using metalorganic vapor phase epitaxy,” Jpn. J. Appl. Phys., 40, 583 (2001). [21] M. Yamada, T. Mitani, Y. Narukawa, S. Shioji, I. Niki, S. Sonobe, K. Deguchi, M. Sano, and T. Mukai , “ InGaN-based near-ultraviolet and blue-light-emitting diodes with high external quantum efficiency using a patterned sapphire substrate and a mesh electrode, ” Jpn. J. Appl. Phys., 41, 1431 (2002). [22] H. Kudo, Y. Ohuchi, T. Jyouchi, T. Tsunekawa, H. Okagawa, K. Tadatomo, Y. Sudo, M.Kato, and T. Taguchi, “Demonstration of high-efficient InGaN-based violet light-emitting diodes with an external-quantum efficiency of more than 40%, ”Phys. Stat. Sol. (a), 200, 95 (2003). [23] S. J. Chang, Y. C. Lin, Y. K. Su, C. S. Chang, T. C. Wen, S. C. Shei, J. C. Ke, C. W. Kuo, S. C. Chen, and C. H. Liu, “Nitride-based LEDs fabricated on patterned sapphire substrates ,” Soli. Stat. Electronics, 47, 1539 (2003). [24] Y. J. Lee, T. C. Hsu, H. C. Kuo, S. C. Wang, Y. L. Yang, S. N. Yen, Y. T. Chu, Y. J. Shen, M. H. Hsieh, M. J. Jou, and B. J. Lee, “Improvement in light-output efficiency of near-ultraviolet InGaN LEDs fabricated on stripe patterned sapphire substrates,” Materials Science and Engineering B, 122, 184(2005). [25]D. S. Wuu, W. K. Wang, W. C. Shih, C. E. Lee, W. Y. Lin, P. Han. R. H. Horng, T. C. Hsu, T. C. Hsu, T. C. Huo, M. J. Jou, A. Lin, and Y. H. Yu, “Enhanced output power of near-ultraviolet InGaN-GaN LEDs grown on patterned sapphire substrates,” IEEE Photon. Technol. Lett., 17, 2 (2005). [26] W. K. Wang, D. S. Wuu, W. C. Shih, J. S. Fang, C. E. Lee, W. Y. Lin, P. Han. R. H. Horng, T. C. Hsu, T. C. Hsu, T. C. Huo, M. J. Jou, A. Lin, and Y. H. Yu, “ Near-ultraviolet InGaN/GaN light-emitting diodes grown on patterned sapphire substrates,” Jpn. J. Appl.Phys., 44, 2512 (2005). [27] Y. J. Lee, J. M. Hwang, T. C. Hsu, M. H. Hsieh, M. J. Jou, B. J. Lee, T. C. Lu, and H. C. Kuo, “GaN-based LEDs with Al-deposited V-shaped sapphire facet mirror,” IEEE Photon. Technol. Lett., 18, 1152 (2006). [28] 潘昌吉, “氮化銦鎵紫外光發光二極體之研製,” 中央大學電機工程研究所博士論文, 2003.6
摘要: 本論文主要研製在氮化銦鎵近紫外光 (400nm) 發光二極體植入圖案化布拉格反射鏡,並探討材料特性和其光電元件的特性。此圖案化布拉格反射鏡將可以阻擋貫穿式差排於隨後的磊晶薄膜內之延伸,而在其上方之橫向磊晶也將進一步降低磊晶薄膜缺陷密度,以改善氮化鎵磊晶品質,另外,布拉格反射鏡所具備之反射率也能夠增加光之取出效率,提升發光二極體之光輸出功率。 其蝕刻缺陷密度則分別為6.3 ×105 cm-2與4.7×106 cm-2,此結果顯示出藉由植入圖案化布拉格反射鏡可以改善磊晶薄膜之結晶質,降低缺陷密度,以當作高品質之底材。在元件特性方面,具備圖案化布拉格反射鏡及不具備之發光二極體 操作在20 mA時,其順向偏壓分別為3.51及3.52 V,此結果意味導入圖案化布拉格反射鏡並不會影響二極體之操作電壓。而其在-5V之反向偏壓之逆向漏電分別為0.11nA與1.36nA,這樣的改善可歸因於降低缺陷密度所致。另外,其光輸出功率可由3.55mW增加至4.70 mW,此32.39%的光功率提升,顯示出藉由改善氮化鎵底材的品質及導入圖案化布拉格反射鏡增加光取出效率,是為深具淺力之提升元件效能之方式。
In this is,a 400nm near-ultraviolet InGaN/AlGaN light-emitting diode with a patterened distributed Bragg reflector (P-DBR LED) in this sudy is demonstrated. The design of embeded patterned DBR on a GaN template attempts to reduce threading dislocation density (TDD) in the epitaxial template and enhance light extractions efficiency via the reflective behavior of the DBR at the same time. The full-width at half-maximum (FWHM) of double crystal X-ray diffraction peak for (002) and (102) plane of GaN bulk with and without patterned DBR are 275.2 and 299 ; 324.4 and 435 arcsec, respectively. Furthermore the etch pit density of them are 6.3 ×105 cm-2 and 4.7×106 cm-2, respectively. It is believed that the patterned DBR can block the threading dislocations and also create the lateral epitaxy growth, then results in obviously epitaxial crystalline improvement and defect density decreaseing. The forward voltage (@ 20 mA) of the P-DBR and conventional LEDs were 3.51V and 3.52 V, respectively. These results indicated that the operating voltage of the P-DBR LED does not arise by this P-DBR structure design. The leakage (@ -5 V) of the P-DBR and conventional LEDs were 0.11 nA and 1.36 nA, respectively. Besides, The light output power for the P-DBR LED was about 1.3 times stronger (@ 20 mA) than the conventional LED. The significant performance improvements can attribute not only the GaN template quality reform, but also light extraction enhancement via the embedded patterned DBR.
URI: http://hdl.handle.net/11455/4216
其他識別: U0005-1408200911364000
文章連結: http://www.airitilibrary.com/Publication/alDetailedMesh1?DocID=U0005-1408200911364000
Appears in Collections:精密工程研究所

文件中的檔案:

取得全文請前往華藝線上圖書館



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.