Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/4217
標題: 微型化動圈式麥克風之設計與製作
Design and Fabrication of Miniature Dynamic Microphones
作者: 蔡燿丞
Tsai, Yao-Cheng
關鍵字: Dynamic microphone
動圈式麥克風
MEMS
frequency response
微機電系統
頻率響應
出版社: 精密工程學系所
引用: [1] E. C. Wente, “A condenser as a uniformly sensitive instrument for the absolute measurement of sound intensity,” Phys. Rev. vol. 10, p. 39, 1917. [2] K. Matsuzawa, “Condenser microphones having a flat frequency response up to 500kHz,” J. Appl. Phys. vol. 17, p. 451, 1978. [3] P. R. Scheepera, A.G.H. van der Donkb, W. Olthuis, P. Bergveld, “A review of silicon microphones,” Sens. Actuators A. vol. 44, p. 1, 1994. [4] A. Dehe, “Silicon microphone development and application,” Sens. Actuators A. vol. 133, p. 283, 2007. [5] 徐振諄, “高感度微型電容式矽微麥克風之研製”, 國立中興大學精 密工程研究所碩士論文, 2007. [6] C. W. Tan, J. Miao, “Analytical modeling for bulk-micromachined condenser microphone,” J. Acoust. Soc. Am. vol. 120, p. 750, 2006. [7] W. H. Hsieh, T. Y. Hsu, and Y. C. Tai, “A micromachined thin-film teflon electret microphone,” International Conference Solid-State Sensors and Actuators, p. 425, 1997. [8] R. C. Coile, "The Development of Modern Microphones," J. Acoust. Soc. Am. vol. 11, p. 163, 1931. [9] http://history.sandiego.edu/gen/recording/microphones2.html [10] J. Eargle, “The microphone book,” Oxford: Elsevier Press, p. 84, 2004. [11] W. Fiala, “Electroacoustic Transducer,” U. S. Patent. 3014099, 1961. [12] S. Yoshida, “Dynamic microphone,” U. S. Patent. 4427845, 1984. [13] S. Uzawa, and Yoshio Kikuti, “Diaphragm of dynamic microphone,” U. S. Patent. 5148492, 1992. [14] H. Akino, “Dynamic microphone,” U. S. Patent. 2005/0276428, 2005. [15] G. M. Sessler, and J.E. West, “Self-biased condenser microphone with high capacitance,” J. Acoust. Soc. Am. vol. 34, p. 1787, 1962. [16] P. R. Scheeper, A. G. H. van der Donk, W. Olthuis, and P. Bergveld, “A review of silicon microphones,” Sens. Actuators A. vol. 44, p. 1, 1994. [17] R. Schellin, and G. Hess, “A silicon subminiature microphone based on piezoresistive polysilicon strain gauges,” Sens. Actuators A. vol .32, p. 555, 1992. [18] M. Royer, J.O. Holmen, M. A. Wurm, O. S. Aadland, and M. Glenn, “ZnO on Si integrated acoustic sensor,” Sens. Actuators A. vol. 4, p. 357, 1983. [19] T. J. Yao, “Parylene for MEMS applications,” Ph.D dissertation, Department of Electrical Engineering, California Institute of Technology, Pasadena, California, p. 191, 2002. [20] H. S. Noh, S. Kim, J. P. Hesketh, H. M, and L. Wong, “Miniature corrugated diaphragm for fiber-optic-linked pressure sensing (FOLPS),” ASME International Mechanical Engineering Congress & Exposition Washington, D. C., p. 16, 2003. [21] 邢泰剛, “微機電系統技術與應用”, 行政院國家科學委員會精密儀器中心出版, p. 544, 2003. [22] P. R.Scheeper, A. G. H. van der Donk, W. Olthuis, and P. Bergveld, “Fabrication of silicon condenser microphone using single wafer technology,” J. Microelectromech. Syst. vol. 1, p. 3, 1992. [23] M. L. Gayford, B. Sc., C. Eng., M. I. E. E., A. C. G. I., D. I. C. Senior engineer, ITT Component Group, and Harlow, “Electroacustic, microphone, earphones and loudspeakers,” London: Newnes- Butterworths Press., p. 137, 1971. [24] 邢泰剛, “微機電系統技術與應用,” 行政院國家科學委員會精密儀器中心出版, p. 544, 2003. [25] A. J. Sprenkls, “A silicon subminiature electret microphone,” Ph.D. Dissertation, Twente University, Netherlands, 1988. [26] W. H. Hsieh, T. Y. Hsu, and Y. C. Tai, and Int. Conf, “Solid-State Sensors and Actuators Transducers”, IEEE Press 425, 1997. [27] M. D. Giovanni, “Flat and corrugated diaphragm design handbook”, New York: CRC Press, p. 130, 1982. [28] M. Mullenborn, P. Rombach, U. Klein, K. Rasmussen, J. F. Kuhmann, and M. Heschel, ”Chip-size-packaged silicon microphones,” Sens. Actuators A. vol. 92, p. 23, 2001. [29] M. P. Norton, “Fundamentals of noise and vibration analysis for engineer,” New York: Cambridge University Press, p. 197, 1969. [30] A. G. H. van der, Donk, P. Bergveld and J. A. Voorthuyzen, “Optimal design of electret microphone MOSFET preamplifier,” J. Acoust. Soc., Am. vol. 91, p. 2261, 1992. [31] A. G. H. van der, Donk, J. A. Voorthuyzen and P. Bergveld, “General considerations of noise in microphone preamplifiers,” Sens. Actuators A. vol. 25, p. 515, 1991. [32] W. R. Bevan, R. B. Schulein, and C. E. Seeler, “Design of a studio-quality condenser microphone using electret technology,” J. Audio Eng. Soc. vol. 26, p. 947, 1978. [33] http://searchnetworking.techtarget.com/sDefinition/0,,sid7_gci213018,00.html [34] D. P. Arnold, S. Gururaj, S. Bharadwaj, T. Nishida, and M. Sheplak, “A piezoresistive microphone for aeroacustic measurement,” ASME Int. Mechanical Engineering Congress & Exposition, Proceedings of IMECE’01, p. 1, 2001. [35] 揚善國, “感應與量測度工程,” 全華科技圖書股份有限公司”, p. 7, 2003. [36] P. M. Morse, “Vibration and aound, international series in pure and applied physics,” New York: McGraw-Hill Press, 2nd ed., p. 189, 1948. [37] B. B. Bouer, and Shure Brothers, “Equivalent circuit analysis of mechanical-acoustic structures,” Inc. Chicago, Illinois, p. 112, 1954. [38] 白明憲, “工程聲學,” 全華科技圖書股份有限公司出版, p. 5, 2005. [39] 王以真, “實用磁路設計,” 全華科技圖書股份有限公司出版, p. 189, 2006. [40] 陳建盛, “矽晶麥克風之設計與製作, ” 國立交通大學電機與控制工程系碩士論文, 1999. [41] H. S. Noh, “Miniature corrugated diaphragm for fiber- opitc- linked pressure sensing (FOLPS),” ASME Int. Mechanical Engineering Congress & Exposition Proceedings of IMECE’ 03, p. 1, 2003. [42] 王以真, “實用磁路設計,” 全華科技圖書股份有限公司出版, p. 48, 2006. [43] S. Wolf, “Silicon Processing for the VLSI,” era. 2, Process integration , 1986. [44] K. R. Williams, and R. S. Muller, “Etch rates for micromachining processing,” J. Microelectromech. Syst. vol . 5, p. 256, 1996. [45] K. R. Williams, K. Gupta, and M. Wasilik, “Etch rates for micromachining processing-Part II,” J. Microelectromech. Syst. vol. 12, p. 761, 2003. [46] E. D. Palik, V. M. Bermudez, and O. J. Glembocki, “Ellipsometric study of the etch-stop mechanism in heavily doped silicon,” J. Electrochem. Soc., p. 135, 1985. [47] T. N. Jackson, M. A. Tischler, and K. D. Wise, “An electrochemical P-N junction etch-stop for the formation of silicon microstructures,” IEEE Electron. Device Lett. EDL-2, p. 44, 1981. [48] P. M. Sarro, and A. W. van Herwaarden, “Silicon cantilever beams fabricated by electrochemically controlled etching for sensor applications,” J. Electrochem. Soc. vol. 133, p. 1724, 1986.
摘要: 本論文為第一個提出微型動圈式麥克風之設計與製作,利用MEMS技術─體型微加工、面型微加工與電鑄製程將動圈式麥克風確切的微小化。動圈式麥克風組成主要為振膜、感應線圈與磁路。為了改善傳統振膜與感應線圈重量太重而導致振動速度太慢,提出平面式感應線圈與振膜,提高其振動速度;並配合磁路設系統設計、模擬分析與量測,獲得較佳之磁路設計,進而提高微型動圈式麥克風感度。 動圈式微麥克風的靈敏度主要取決於磁場中磁通量密度、感應線圈長度與振動速度。故本論文以雙磁路系統設計來增加磁通量密度,並選用低楊氏係數與應力的振膜材料聚亞醯胺作為振膜(直徑:16 mm,厚度1 um),結合製作平面感應線圈於上,藉此設計以提高其振動速度。在本論文之設計下,雙磁路磁通量密度量測值可達0.4190 T,模擬值為0.3747 T,感應線圈長度為36.5 cm,電阻值為193 Ω,振動速度為10.4 um/s。在1k Hz取樣頻率下,量測其頻率響應值為-54.8 dBV/Pa,相當於輸出感度為1.82 mV/Pa,相較於一般市售動圈式麥克風之頻率響應值為-50~-60 dBV/Pa,相當於輸出感度為3.16 mV/Pa~1 mV/Pa。本論文除了能改善傳統動圈式麥克風振動速度過慢,亦能改善傳統高頻頻率響應不好之缺點,使頻寬擴大,藉由此設計,本論文所研究之微型化動圈式麥克風已達市售動圈式麥克風之標準。
This thesis is the first one that presents the design and fabrication of miniature dynamic microphones using micro-electro-mechanical system (MEMS) techniques. The bulk micromachining, surface micromachining and micro electroplating technique were applied to fabricate the miniature microphone. The dynamic microphone consists of diaphragm, induction coil and magnet system design. In order to improve the traditional disadvantages such as heavy induction coil and low vibration velocity, the plane induction coil and diaphragm were designed. By combining the magnet system design, simulation and measurement, an optimum magnet system and high sensitivity of miniature dynamic microphone were obtained. The dynamic microphone sensitivity depends on magnetic flux density, induction coil length and vibration velocity. Here, the double magnet circuit was applied to enhance the magnetic flux density. Moreover, the low tensile stress material made of polyimide with induction coil and high dynamic velocity was used to be a diaphragm. According to this design and optimized fabrication, the responsivity of miniature dynamic microphone is -54.8 dBV/Pa (@ 1k Hz) that is corresponding to sensitivity about 1.82 mV/Pa. Comparatively, the responsivity of the commercial traditional dynamic microphone is -50 dBV/Pa to -60 dBV/Pa (@1kHz). The obtained performance of miniaturized dynamic microphone (ψ16 mm x 100 um diaphragm andψ6 mm x 3 mm magnet) can be better than that of traditional dynamic microphone (ψ25 mm x 2 mm diaphragm andψ18 mm x 6 mm magnet). It can achieve the market requirement.
URI: http://hdl.handle.net/11455/4217
其他識別: U0005-1408200916570900
文章連結: http://www.airitilibrary.com/Publication/alDetailedMesh1?DocID=U0005-1408200916570900
Appears in Collections:精密工程研究所

文件中的檔案:

取得全文請前往華藝線上圖書館



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.