Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/4220
DC FieldValueLanguage
dc.contributor葉茂勳zh_TW
dc.contributor洪仕育zh_TW
dc.contributor.advisor楊錫杭zh_TW
dc.contributor.author黃俊貴zh_TW
dc.contributor.authorHuang, Jyun-Gueien_US
dc.contributor.other中興大學zh_TW
dc.date2010zh_TW
dc.date.accessioned2014-06-06T06:27:17Z-
dc.date.available2014-06-06T06:27:17Z-
dc.identifierU0005-1708200911511900zh_TW
dc.identifier.citation1.H. Oku and M. Ishikawa, “High-speed liquid lens with 2ms response and 80.3 nm root-mean-square wavefront error,” Applied Physics Letters, vol. 94, pp. 221108(1)-221108(3), 2009. 2.P. M. Moran, S. Dharmatilleke, A. H. Khaw, K. W. Tan, M. L. Chan and I. Rodriguez, “Fluidic lenses with variable focal length,” Applied Physics Letters, vol. 88, pp. 41120-41123, 2006. 3.M. Agarwal, R. A. Gunasekaran, P. Coane and K. Varahramyan, “Polymer-based variable focal length microlens system,” Journal of Micromechanics and Microengineering, vol. 14, pp. 1665-1673, 2004. 4.J. Chen, W. Wang, J. Fang and K. Varahramyan, “Variable-focusing microlens with microfluidic chip,” Journal of Micromechanics and Microengineering, vol. 14, pp. 675-680, 2004. 5.S. W. Seo, S. Han, J. H. Seo, Y. M. Kim, M. S. Kang, N. K. Min, W. B. Choi and M. Y. Sung, “Microelectromechanical-system-based variable-focus liquid lens for capsule endoscopes,” Japanese Journal of Applied Physics, vol. 48, pp. 052404(1)-052404(4), 2009. 6.M. Kang, R. Yue, J. Wu, F. Ouyang and L. Liu, “Meniscus pinned variable-focus liquid lens based on electrowetting-on-dielectric, ”Nano/Micro Engineered and Molecular Systems, pp. 357-360, 2007. 7.F. Ouyang, J. Wu, M. Kang, R. Yue and L. Liu, “Planar variable-focus liquid lens based on electrowetting on dielectric,” Nano/Micro Engineered and Molecular Systems, pp. 834-837, 2007. 8.C. C. Cheng, C. A. Chang and J. A. Yeh, “Variable focus dielectric liquid droplet lens,” Optics Express, vol. 14, pp. 4101-4106, 2006. 9.W. Wang, J. Fang and K. Varahramyan, “Compact variable-focusing microlens with integrated thermal actuator and sensor,” IEEE Photonics Technology Letters, vol. 17, pp. 2643-2645, 2005. 10.C. C. Cheng, C. A. Chang, C. H. Liu and J. A. Yeh, “A tunable liquid-crystal microlens with hybrid alignment,” Journal of Optics A : Pure and Applied Optics, vol. 8, pp. 365-369, 2006. 11.Y. Choi, J. H. Park, J. H. Kim and S. D. Lee, “Fabrication of a focal length variable microlens array based on a nematic liquid crystal,” Optical Materials, vol. 21, pp. 643-646, 2002. 12.耿繼業,幾何光學,全華科技圖書股份有限公司,2006。 13.孫慶成,光電概論,全華科技圖書股份有限公司,2004。 14.吳朗,電子陶瓷入門,全欣資訊圖書有限公司,1992。 15.張朝智,壓電驅動膜片可變焦液態透鏡之研究,國立中興大學碩士論文,2007。 16.莊達人,VLSI製造技術,高立圖書有限公司,2000。 17.Zemax快速學習手冊,訊技科技股份有限公司。 18.丁群修,可變焦液體透鏡之製程研發,國立中興大學碩士論文,2005。 19.楊中堯,液體注入式微型可變焦透鏡模組研製,國立中興大學碩士論文,2006。 20.郭明蒼,低電壓之壓電驅動膜片可變焦液態透鏡結合UV凸透鏡之研究,國立中興大學碩士論文,2008。 21.黃俊瑋,以類LIGA技術與紫外光固化膠製作微透鏡陣列之新型製程設計探討,國立中興大學碩士論文,2004。 22.N. Chronis, G. L. Liu, K. H. Jeong and L. P. Lee, “Tunable liquid-filled microlens array integrated with microfluidic network,” Optics Express, vol. 11, pp. 2370-2378, 2003. 23.S. Kuiper and B. H. W. Hendriks, “Variable-focus liquid lens for miniature cameras,” Applied Physics Letters, vol. 85, pp. 1128-1130, 2004.zh_TW
dc.identifier.urihttp://hdl.handle.net/11455/4220-
dc.description.abstract本研究的目標為開發低電壓驅動之可變焦液態透鏡模組。利用金屬雕刻機加工製作模組之腔體,藉由黃光微影技術製作出光阻模具結構,鍍上銀薄膜之後以PDMS材料作翻模,將翻模後的PDMS透鏡薄膜與壓克力腔體黏合。最後結合壓電致動片驅動,經由腔體內的壓力變化來改變PDMS透鏡薄膜的曲率以達到變焦的效果。本實驗以直徑3 mm之透鏡作探討,其所能變焦之範圍為54.89~9.02mm,驅動電壓為10V ~ 100V。利用剛性較佳的壓克力取代PDMS作為透鏡之腔體,目的是要減少壓電片之驅動效能的損失。與以往利用外接之驅動方式不同,不僅減省空間也方便於未來整合在光學鏡頭模組上,可有效地減少不必要之接合縫隙所造成的液體外漏,並能有效地降低成本以達到量產所需。zh_TW
dc.description.abstractThe research is to develop about method with low driving voltage for variable focus liquid lens module, using milling machine to process the acrylic chamber with variable focus liquid lens module, and using lithography to fabricate photoresist mold. Then,to deposit sliver on the structure and to mold membrane with PDMS. The molded structure forms the transparent membrane and PDMS membrane is combined with acrylic chamber. Finally, using PZT actuator to drive PDMS membrane and varying the curvature of PDMS membrane to achieve the zoom through the various pressure of chamber. The variable focus liquid lens with 3 mm in diameter, with the focus turning range from 54.89~9.02 mm, and with driving voltage 10~100V. This study is to focus on replacing PDMS with the acrylic which has the good rigidity for lens chamber. The purpose is to decrease the loss of driving PZT actuator. Different from the circumscribed driving way, it not only decreases the space but also integrates on optics lens conveniently. It can reduce the liquid leak when connecting the chink and reduce the cost efficiently to achieve the quantity of output.en_US
dc.description.tableofcontents摘要 i Abstract ii 目次 iii 圖目次 v 表目次 viii 第一章 緒論 1 一、 前言 1 二、 研究動機 2 三、 研究方法與目標 3 四、 論文架構 3 第二章 文獻回顧 4 一、 壓力式 5 二、 電濕潤式 9 三、 熱致動式 12 四、 液晶變焦系統 13 第三章 基本理論 16 一、 折射定率 16 二、 厚透鏡之光學系統 17 三、 透鏡組之光學 19 四、 自動對焦公式 20 五、 接觸角與曲率半徑 21 六、 驅動體積關係式 22 第四章 薄膜可變焦液態透鏡之設計與製作 24 一、 前言 24 二、 結構設計與分析 24 三、 可變焦液態透鏡之致動器 25 (一) 壓電材料理論 25 (二) 壓電致動器介紹 26 (三) 致動器之設計 27 四、 薄膜可變焦液態透鏡製程 28 (一) 腔體與元件加工 28 (二) 黃光微影(Photolithography)製程 30 (三) PDMS翻模製程 38 (四) 壓電片黏貼、腔體密封與液體注入 40 第五章 實驗結果與分析 43 一、 壓電片位移量測 43 二、 光阻模具結構、PDMS透鏡薄膜結構量測 45 三、 接觸角、曲率半徑與有效焦距量測 48 四、 透鏡薄膜體積變化量之探討比較 55 五、 光學模擬 56 六、 結合鏡組作影像拍攝 62 (一) 結合CCD作固定焦距之影像拍攝 62 (二) 結合攝影機之數位影像拍攝 63 第六章 結論及未來展望 66 一、 結論 66 二、 未來展望 66 參考文獻 68 附錄A 製程儀器設備 70 附錄B 量測儀器設備 74zh_TW
dc.language.isoen_USzh_TW
dc.publisher精密工程學系所zh_TW
dc.relation.urihttp://www.airitilibrary.com/Publication/alDetailedMesh1?DocID=U0005-1708200911511900en_US
dc.subjectVariable focus lensen_US
dc.subject可變焦透鏡zh_TW
dc.subjectPDMSen_US
dc.subjectPZT actuatoren_US
dc.subjectMicro moldingen_US
dc.subjectPDMSzh_TW
dc.subject壓電致動片zh_TW
dc.subject微模造技術zh_TW
dc.title低電壓驅動之可變焦液態透鏡模組之研究zh_TW
dc.titleResearch of Variable Focus Liquid Lens Module Using Low Driving Voltageen_US
dc.typeThesis and Dissertationzh_TW
Appears in Collections:精密工程研究所
文件中的檔案:

取得全文請前往華藝線上圖書館



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.