Please use this identifier to cite or link to this item:
標題: 具金屬基板之薄膜型氮化鎵發光二極體之研製
Investigation of Thin-Film GaN Light-Emitting Diodes with Metal Substrates
作者: 李君聖
Li, Jun-Sheng
關鍵字: Thin film GaN
wafer bonding
laser lift-off
出版社: 精密工程學系所
引用: 參考文獻 [1] G. B. Stringfellow, “High brightness light emitting diode”, Academic Press Inc. Boston, pp. 149-219, 1997. [2] H.Sugawara, and M. Ishikawa, and G. Hatakoshi, “High-efficiency InGaAlP/GaAs visible light-emitting diodes,” App. Phys. Lett., vol. 58, pp. 1010-1012, 1991. [3] H. Sugawara, K. ltaya, H. Nozaki and G. Hatakoshi, “High-brightness lnGaAlP green light-emitting diodes,” App. Phys. Lett., vol. 61, pp. 1775-1777, 1993. [4] D. A. Vanderwater, I. H. Tan, G. E. Hofler, D. C. DeFevere, F. A. Kish, “High-brightness AlGaInP light emitting diodes,” IEEE Invited paper., vol. 85, pp. 1752-1764, 1997. [5] A. Zukauskas, M. S. Shur, and R. Gaska, “Introduction to Solid-State Lighting,” pp. 5-9, New York: Wiley, 2002. [6] S. Nakamura and S. F. Chichibu, “Introduction to Nitride Semiconductor Blue Laser Diode and Light EmittersDiodes,” pp. 11-17, London: Taylor and Francis, 2000. [7] S. Nakamura and G. Fasol, “The Blue Laser Diode: GaN Based Light Emitters and Lasers,” pp. 6-10, Berlin: Springer, 2000. [8] M. R. Krames, M. Ochinai-Holocomb, G. E. Hofler, C. Carter-Coman, E. I. Chen, I. –H. Tan, P. Grillot, N. F. Gardner, H. C. Chui, J. –W. Huang, S. A. Stockman, F. A. Kish, and M. G. Carford, “High-power truncated-inverted-pyramid (AlxGa1-x)0.5In0.5P/GaP light-emitting diodes exhibiting >50% external quantum efficiency,” Appl. Phys. Lett., vol. 75, pp. 2365-2367, Oct. 1999. [9] C. C. Kao, H. C. Kuo, Member, IEEE, H. W. Huang, J. T. Chu, Y. C. Peng, Y. L. Hsieh, C. Y. Luo, S. C. Wang, Member, IEEE, C. C. Yu, and C. F. Lin, “Light–output enhancement in a nitride-based light-emitting diode with 22 undercut sidewalls,” IEEE Photon. Technol. Lett., vol. 17, NO. 1, pp. 19-21, Jan. 2005. [10] D. S. Wuu, W. K. Wang, W. C. Shih, R. H. Horng, C. E. Lee, W. Y. Lin, and J. S. Fang, “Enhanced output power of near-ultraviolet InGaN–GaN LEDs grown on patterned sapphire substrates,” IEEE Photon. Technol. Lett., vol. 17, NO. 2, pp. 288-290, Feb. 2005. [11] C. Huh, K. S. Lee, E. J. Kang, and S. J. Park, “Improved light-output and electrical performance of InGaN-based light-emitting diode by microroughening of the p-GaN surface,” J. App. Phys., vol. 93, pp. 9383-9385, June. 2003. [12] T. Egawa, B. Zhang, and H. Ishikawa, “High performance of InGaN LEDs on (111) silicon substrates grown by MOCVD,” IEEE Electron Device Lett., vol. 26, NO. 3, pp. 169-171, Mar. 2005. [13] J. J. Wierer, D. A. Steigerwald, M. R. Krames, J. J. O’Shea, M. J. Ludowise, G. Christenson, Y.-C. Shen, C. Lowery, P. S. Martin, S. Subramanya, W. Go¨ tz, N. F. Gardner, R. S. Kern, and S. A. Stockman, “High-power AlGaInN flip-chip light-emitting diodes,” App. Phys. Lett., vol. 78, pp. 3379-3381, May .2001. [14] R. H. Horng, D. S. Wuu, S. C. Wei, and C. Y. Tseng, M. F. Huang, K. H. Chang, P. H. Liu, and K. C. Lin, “AlGaInP light-emitting diodes with mirror substrates fabricated by wafer bonding,” App. Phys. Lett., Vol. 75, pp. 3054-3056, Nov. 1999. [15] R. H. Horng, S. H. Huang, D. S. Wuu, and C. Y. Chiu, AlGaInP/mirror/Si light-emitting diodes with vertical electrodes by wafer bonding App. Phys. Lett., vol. 82, pp. 4011-4013, June. 2003. [16] M. K. Kelly, O. Ambacher, B. Dahlheimer , G. Groos, R. Dimitrov, H. Angerer, and M. Stutzmann, “Optical patterning of GaN films,” Appl. Phys. Lett., vol. 69, pp. 1749-1751, Sep. 1996. [17] W. S. Wong, and T. Sands, N. W. Cheung, M. Kneissl, D. P. Bour, P. Mei, L. T. Romano, and N. M. Johnson, “Fabrication of thin-film InGaN light-emitting diode membranes by laser lift-off,” Appl. Phys. Lett., vol. 75, pp. 1360-1362, Sep. 1999. [18] P. R. Tavemier and D. R. Clarke Dunn, “Mechanics of laser-assisted debonding of films,” J. Appl. Phys., vol. 89, pp. 1527-1536, Feb. 2001. [19] 施敏 原著, 張俊彥 譯著, “半導體元件物理與製程技術,” 第三版, 高立圖書有限公司, 台北, 台灣, pp. 104-115, 2000. [20] 施敏 原著, 張俊彥 譯著, “半導體元件物理與製程技術,” 第三版,高立圖書有限公司, 台北, 台灣, pp. 192-206, 2000. [21] D. K. Schroder, Semiconductor Material and Device Characterization , 1990. [22] V. M. Burmedez, “Study of oxygen chemisorption on the GaN(0001)-(1×1) surface,” J. Appl. Phys., vol. 80, pp. 1190-1200, July. 1996. [23] 史光國, “半導體發光二極體及固態照明,” 全華科技圖書股份有 限公司出版, pp. 2-1 - 2-72, 2005. [24] P. C. K. Kwok, C. C. Chan and E. Herbert Li, “Designing an external efficieny of over 30% for light emitting diode,” Lasers and Electro-Optics Society Annual Meeting, 1998. LEOS ’98. IEEE, vol. 1, pp.187-188, 1998. [25] E. Herbert Li, Chun-Chung Chan, and P. C. K. Kwok, “Optimization of textured-surface light emitting diode,” Electron Devices Meeting, 1998. Proceedings., 1998 IEEE Hong Kong, pp.6-9, 1998. [26] J. K. Sheu, Y. K. Su, G. C. Chi, W. C. Chen, C. Y. Chen, C. N. Huang, J. M. Hong, Y. C. Yu, C. W. Wang, and E. K. Lin, “The effect of thermal annealing on the Ni/Au contact of p-type GaN,” J. Appl. Phys. vol. 83, 3172 (1998). [27] J. K. Ho, C. S. Jong, C. C. Chiu, C. N. Huang, C. Y. Chen, and K. K. Shih, “Low-resistance ohmic contacts to p-type GaN,” Appl. Phys. Lett. vol. 74, 1275 (1999). [28] J. K. Ho, C. S. Jong, C. C. Chiu, C. N. Huang, K. K. Shih, L. C. Chen, F. R. Chen, and J. J. Kai, “Low-resistance ohmic contacts to p-type GaN achieved by the oxidation of Ni/Au films,” J. Appl. Phys. vol. 86, 4491 (1999). [29] S. R. Jeon, Y. Ho. Song, H. J. Jang, and G. M. Yang, “Lateral current spreading in GaN-based light-emitting diodes utilizing tunnel contact junctions,” Appl. Phys. Lett. vol. 78, 3265 (2001). [30] T. Margalith, O. Buchinsky, D. A. Cohen, A. C. Abare, M. Hansen, S. P.DenBaars, and L. A. Coldren, “Indium tin oxide contacts to gallium nitride optoelectronic devices,” Appl. Phys. Lett. vol. 74, 3930 (1999). [31] R. H. Horng, D. S. Wuu, Y. C. Lien, and W. H. Lan, “Low-resistance and high-transparency Ni/indium tin oxide ohmic contacts to p-type GaN,” Appl. Phys. Lett. vol. 79, 2925 (2001). [32] C. S. Chang, S. J. Chang, Y. K. Su, C. H. Kuo, W. C. Lai, Y. C. Lin, Y. P. Hsu, S. C. Shei, J. M. Tsai, H. M. Lo, J. C. Ke, J. K. Sheu “High brightness InGaN green LEDs with an ITO on n/sup ++/-SPS upper contact,” IEEE. vol. 50, 2208 (2003). [33] S. M. Pan, R. C. Tu, Y. M. Fan, R. C. Yeh, and J. T. Hsu, “Improvement of InGaN-GaN light-emitting diodes with surface-textured indium-tin-oxide transparent ohmic contacts,” IEEE. vol. 15, 646 (2003). [34] J. H. Son, H. W. Jang, and J. L. Lee, “Low-resistance and high-reflectance Ni/Ag/Ru/Ni/Au ohmic contact on p-type GaN,” Appl. Phys. Lett. vol. 85, 4421 (2004). [35] P. R. Tavemier and D. R. Clarke Dunn, “Mechanics of laser-assisted debonding of films,” J. Appl. Phys. vol. 89, 1527 (2001). [36] Z. Li, X. Hu, K. Chen, R. Nie, X. Luo, X. Zhang, T. Yu, B. Zhang, S. Chen, Z. Yang, Z. Chen and G. Zhang, “Preparation GaN-based cross-sectional TEM specimens by laser lift-off,” Micron, vol. 36, 281 (2005). [37] M. V. Allmen and A. Blastter, “Laser-Beam Interactions with Materials: Physical Principles and Application”, Berlin, 2nd Springer Publisher (1995). [38] R. Groh, G. Gerey, L. Bartha, and J. I. Pankove, “On the thermal decomposition of GaN in vacuum,” Phys. Stat. Sol. (a) vol. 26, 353 (1974). [39] C. J. Sun, P. Kung, A. Saxler, H. Ohsato, E. Bigan, and M. Razeghi, “Thermal stability of GaN thin films grown on (0001) Al2O3, (01 2) Al2O3 and (0001)Si 6H-SiC substrates,” J. Appl. Phys. vol. 76, 236 (1994). [40] M. E. Lin, B. N. Sverdlov, and H. Morkoc, “Thermal stability of GaN investigated by low-temperature photoluminescence spectroscopy,” Appl. Phys. Lett. vol. 63, 3625 (1993). [41] W. S. Wong, Y. Cho, N. J. Quitoriano, T. Sands, A. B. Wengrow and N. W. Cheung, “Integration of GaN thin films with dissimilar substrate materials by Pd-In metal bonding and laser lift-off,” J. Electronic Mater. vol. 28, 1409 (1999). [42] W. S. Wong, J. Kruger, Y. Cho, B. P. Linder, E. R. Weber, N. W. Cheung, and T. Sands, “Selective UV-laser processing for lift-off of GaN thin films from sapphire substrates,” in Proc. Symp. On Light Emitting Devices for Optoelectronic Applications and State-of—the-Art Program on Compound Semiconductors XXVIII. vol. 98-2, 377 (1998). [43] D. A. Stocker, I. D. Goepfert, E. F. Schubert, K. S. Boutros, and J. M. Redwing, “Crystallographic Wet Chemical Etching of p-Type GaN,” J. Electrochem. Soc. vol. 147 (2), 763 (2000). [44] A. Shintani, and S. Minagawa, “Etching of GaN Using Phosphoric Acid,” J. Electrochem. Soc. vol. 123 (5), 706 (1976). [45] J. Neugebauer and C. G. Van de Walle, “Gallium vacancies and the yellow luminescence in GaN,” Appl. Phys. Lett. vol. 69, 503 (1996). [46] H. W. Jang and J. L. Lee, “Mechanism for ohmic contact formation of Ni/Ag contacts on p-type GaN,” Appl. Phys. Lett. vol. 85, 5920 (2004). [47] D. L. Hibbard, S. P. Jung, C. Wang, D. Ullery, Y. S. Zhao, H. P. Lee, W. So and H. Liu, “Low resistance high reflectance contacts to p-GaN using oxidized Ni/Au and Al or Ag,” Appl. Phys. Lett. vol. 83, 311 (2003). [48] J. Y. Kim, S. I. Na, G. Y. Ha, M. K. Kwon, I. K. Park, J. H. Lim and S. J. Park, “Thermally stable and highly reflective AgAl alloy for enhancing light extraction efficiency in GaN light-emitting diodes,” Appl. Phys. Lett. vol. 88, 043507 (2006). [49] H. Kim, K. H. Baik, J. Cho, J. W. Lee, S. Yoon, H. Kim, S. N. Lee, C. Sone, Y. Park and T. Y. Seong, “High-Reflectance and Thermally Stable AgCu Alloy p-Type Reflectors for GaN-Based Light-Emitting Diodes,” IEEE Photonics Technol. Lett. vol. 19, 336 (2007). [50] V. Adivarahan, A. Lunev, M. A. Khan, J. Yang, G. Simin, M. S. Shur and R. Gaska, “Very-low-specific-resistance Pd/Ag/Au/Ti/Au alloyed ohmic contact to p GaN for high-current devices,” Appl. Phys. Lett. vol. 78, 2781 (2001). [51] H. W. Jang, J. H. Son and J. L. Lee, “Highly reflective low resistance Ag-based Ohmic contacts on p-type GaN using Mg overlayer,” Appl. Phys. Lett. vol. 90, 012106 (2007).
摘要: 論文主要將高散熱之金屬銅基板應用於薄膜型氮化鎵發光二極體(Thin-film GaN LED),藉由精密電鍍技術(Electroplating)與晶圓接合技術(Wafer bonding)製作一具有金屬銅基板之薄膜氮化鎵發光二極體,搭配反射率達92 %之鎳/銀(Ni/Ag)鏡面及雷射剝離技術(Laser lift-off, LLO),目的為製作一高亮度與高散熱特性之薄膜氮化鎵發光二極體。目前一般製作具銅基板之垂直式發光二極體多採用精密電鍍製程,本論文嘗試使用晶圓接合銅基板方式,欲證明晶圓接合銅基板應用於薄膜氮化鎵發光二極體製程之可行性。最後將使用紅外線熱影像分析儀與暫態熱阻分析儀探討其在熱特性上與電鍍銅基板與傳統發光二極體有何差異性。 電性方面,在小電流20 mA注入下,薄膜氮化鎵結構之電鍍銅基板、晶圓接合銅基板與傳統水平結構之操作電壓均為2.8 V左右;當大電流350 mA注入下,三者皆為3.5 V。在-5 V操作電壓下,三者的漏電流均小於1 uA之標準。光特性方面,在350 mA注入下,電鍍銅基板、晶圓接合銅基板與傳統水平結構之光輸出功率分別為134 mW、83.4 mW與30.0 mW;電光轉換效率分別為10.7 %、6.7 %與2.4 %。在熱特性方面,以紅外線熱影像分析此三種元件晶片表面溫度,分別為電鍍銅基板43.5 ℃、晶圓接合銅基板45.8 ℃及傳統水平結構47.5 ℃;以暫態熱阻量測分析儀測得各元件之整體熱阻值為電鍍銅基板11.1 K/W、晶圓接合銅基板13.2 K/W及傳統水平結構19 K/W。
In this study, a vertical conductive structure of thin-film GaN light emitting diode(LED) was prepared by high thermal conductivity copper substrate, laser lift-off (LLO), Ni/Ag mirror with high reflectivity (about 92%), electroplating and wafer bonding technique are demonstrated. In general, vertical type GaN LEDs with high thermal conductive copper substrate were fabricated by electroplating technique. In this thesis, a thin-film GaN LED with copper substrate was also fabricated by wafer bonding process. The forward voltage (@20 mA) of the electroplating copper substrate LEDs, wafer bonding copper substrate LED and conventional LEDs were 2.79 V, 2.80V and 2.82 V, respectively. The forward voltage (@350 mA) of the electroplating copper substrate LEDs, wafer bonding copper substrate LED and conventional LEDs were 3.55 V, 3.60 V and 3.52 V, respectively. The leakage currents (@-5 V) of these devices were also smaller then 1 uA. The output power of electroplating and wafer bonding copper substrate LED were about 4.0 and 2.6 times compared with conventional LEDs. The characteristic of thermal conductivity can be obtained by IR and T3ster system measurement. The surface temperature for electroplating, wafer bonding and conventional device were 43.5 ℃, 45.8 ℃ and 47.5 ℃, respectively, whereas the thermal resistance were 11.1 K/W, 13.2 K/W and 19 K/W, respectively.
其他識別: U0005-1808200923101500
Appears in Collections:精密工程研究所



Show full item record
TAIR Related Article

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.