Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/4225
標題: 高功率藍光發光二極體之熱管理最佳化設計與製作
Design and Fabrication of Optimized Thermal Management for High Power Blue LEDs Applications
作者: 林敬倍
Lin, Ching-Bei
關鍵字: light-emitting diod
發光二極體
GaN
electroplating
light shape
high dissipation structure
氮化鎵
精密電鑄技術
散熱結構
光杯
出版社: 精密工程學系所
引用: [1] M. Arik, J. Petroski, and S. Weaver, “Thermal Challenges in the Future Generation Solid State Lighting Application: Light Emitting Diodes,” 2002 Inter Society Conf. On Thermal Phenomena, p. 113, 2002 [2] J. Petroski, “Thermal Challenges Facing New Generation Light Emitting Diodes (LED) for Lighting Applications,” Solid State Lighting, Proc. of SPIE, Vol. 4776, p. 215, 2002 [3] F. M.Steranka et al., “High Power LEDs Technology Status and Market Application,” Phys. Stat. sol.(a)194, No.2, p. 380, 2002 [4] http://www.materialsnet.com.tw/DocView.aspx?id=7548 [5] H. Sugawara, M. Ishikawa, and G. Hatakoshi, “High Efficiency InGaAlP/GaAs Visible Light Emitting Diodes,” App. Phys. Lett., vol. 58, p. 1010, 1991. [6] H. Sugawara, M. Ishikawa, and G. Hatakoshi, “High Brightness InGaAlP Green Light Emitting Diodes,” App. Phys. Lett., vol. 61, p. 1752, 1992. [7] D. A. Vanderwater, I. H. Tan, G. E. Hofler, D. C. DeFevere, and F. A. Kish, “High Brightness AlGaInP Light Emitting Diodes,” IEEE., vol. 85, p. 1752, 1997. [8] S. Nakamura, M. Senoh, N. Iwasa, S. Nagahama, T. Yamada, and T. Mukai, “Superbright Green InGaN Single Quantum Well Structure Light Emitting Diodes,” Jpn. J. Appl. Phys., vol. 34, p. 1332, 1995. [9] F. A. Kish, F. M. Steranka, D. C. DeFevere, D. A. Vanderwater, K. G. Park, C. P. Kuo, T. D. Osentowski, M. J. Peanasky, J. G. Yu, R. M. Fletcher, D. A. Steigerwald, and M. G. Craford, “Very High Efficiency Semiconductor Wafer Bonded Transparent Substrate (AlxGa1–x)0.5In0.5P/GaP Light Emitting Diodes, ” Appl. Phys. Lett., vol. 64, p. 2839, 1994. [10] F. A. Kish, D. A. Vanderwater, D. C. DeFevere, D. A. Steigerwald, G. E. Hofler, K. G. Park, and F. M. Steranka, “High Reliable and Efficient Semiconductor Wafer Bonded AlGaInP/GaP Light Emitting Diodes,” Electron. Lett., vol. 32, p. 132 , 1996. [11] A. Zukauskas, M. S. Shur, and R. Gaska, “Introduction to Solid-State Lighting,” New York: Wiley and Sons Press, p. 12, 2002. [12] M. Hao, T. Sugahara, H. Sato, Y. Morishima, Y. Naoi, L. T. Romano, and S. Sakai, “Study of Threading Dislocations in Wurtzite GaN Films Grown on Sapphire by Metalorganic Chemical Vapor Deposition,” Jpn. J. Appl. Phys., vol. 37, p. 291 , 1998. [13] E. Kuokstis, C. Q. Chen, J. W. Yang, M. Shatalov, M.E. Gaevski, V. Adivarahan, and M. A. Khan, “Room Temperature Optically Pumped Laser Emission from a-plane GaN with High Optical Gain Characteristics,” Appl. Phys. Lett., vol. 84, p. 2998, 2004 [14] A. Zukauskas, M. S. Shur, and R. Gaska, “Introduction to Solid-State Lighting,” New York: Wiley and Sons Press, p. 12 , 2002. [15] S. Nakamura, and G. Fasol, “The Blue Laser Diode: GaN Based Light Emitters and Lasers,” Berlin: Springer Press, p. 10, 2000. [16] S. Nakamura, and S. F. Chichibu, “Introduction to Nitride Semiconductor Blue Laser Diode and Light Emitter Diodes,” London:Taylor and Francis Press, p. 45, 2000. [17] F. Wall, P. Martin, G. Harbers, “High Power LED Package Requirement,” Third International Conference on Solid State Lighting, Proc. Of SPIE, Vol. 5187, p. 85, 2004 [18] OIDA, “Light Emitting Diodes (LEDs) for General Illumination,” An OIDA Technology Roadmap Update 2002 [19] N. Narendran and Y. Gu, “Life of LED-Based White Light Sources,” Journal of Display Technology, IEEE/OSA, Vol. 1, p. 1,2005 [20] http://www.neopac-lighting.com/index.php/Technology/NeoPac- Universal-Platform.html [21] 史光國, 半導體發光二極體及固態照明, 全華科技, p.2.1, 2005. [22] 黃調元, “半導體元件物理與製作技術,” 國立交通大學出版社,p. 41, 2003. [23] Y. Xi and E. F. Schubert, “Junction Temperature Measurement in GaN Ultraviolet Light Emitting Diodes Using Diode forward Voltage Method,” Appl. Phys. Lett. vol. 85, p. 2163, 2004. [24] Y. Xi, J. Q. Xi, T. Gessmann, J. M. Shah, J. K. Kim, E. F. Schubert, A. J. Fischer, M. H. Crawford, K. H. A. Bogart, and A. A. Allerman, “Junction and Carrier Temperature Measurements in Deep Ultraviolet Light Emitting Diodes Using Three Different Methods,” Appl. Phys. Lett. vol. 86, p. 1907, 2005. [25] P. Incropera and P. DeWitt, “Introduction To Heat Transfer 4th,” New York:John Wiley & Sons Press, p. 13, 2001. [26] J. Moran and N, Shapiro, “Fundamentals of Engineering Thermodynamics 6th,” New York:John Wiley & Sons Press, p. 110, 2004. [27] Reference Design RD25,“Luxeon Reliability,”www.lumiled.com [28] P. Incropera, P. DeWitt, L. Bergman, S. Lavine, “Fundamentals of Heat and Mass Transfer 4th,” New York:John Wiley & Sons Press, p. 69, 1997. [29] http://www.lumileds.com/ [30] http://www.rapi-tech.com.tw [31] http://www.chct.com.tw/TVS/TVS.HTM [32] 蕭翔允,“高散熱發光二極極體構裝設計與實做研究,”國立中興大學材料工程學系碩士論文,民國97年
摘要: 一般而言,LED(發光二極體)輸入電能只有15%~20%轉換成光能,約有將近80%~85%輸入能量被轉換成熱能,這些熱能如無法適時排出,將使元件溫度升高,進而影響其發光強度及使用壽命,導致發光元件衰退。 本研究主要探討一階散熱之LED銅結構:即氮化鎵發光二極體背面設計具結構的散熱機構,利用精密電鑄技術研製LED散熱結構,藉由銅(400 W/m.k)的高熱傳導特性,直接將元件內部之熱能傳導至散熱基座上,有別於現今LED封裝技術,現有LED封裝是利用銀膠或銀錫銅做為固晶膠,直接將晶粒固晶於導線架或散熱基座上,然而本論文主要分析一階散熱之LED銅結構封裝比較於傳統封裝方式熱的影響,探討一階散熱之LED銅結合不同的散熱基座與不同的熱傳導係數之固晶膠,針對MCPCB(金屬絕緣基板)、鑽石基座、銀膠、銀錫銅相互影響。使LED封裝結構每一層熱阻最佳化設計,從藍寶石基板的厚薄到不同的熱傳導係數固晶膠與基板探討,對發光二極體接面溫度的整體影響。在散熱方面藉由紅外線量測與暫態熱阻量測儀,具有一階散熱之LED結構與原始封裝結構(晶粒厚度100 um、固晶膠:銀錫銅、散熱基板:MCPCB)進行比較,一階散熱之LED結構可減少溫度約14.9%,熱阻約減少48.7%,另外在不同厚度的藍寶石基板結合一階散熱之LED結構中,當厚度相差50 um下,溫度減少2.3%,證實較薄基板可降低溫度,但只是改善有限。另一方面,探討一階散熱之LED結構達最佳化散熱,在比較原始一階散熱之LED結構系統(晶粒厚度100 um、一階散熱銅、銀錫銅與散熱基板:MCPCB)中、若使用較高熱傳導係數(>500W/m.K)的固晶膠,則可減少溫度約14.7%,熱阻約減少66.6%,若使用高導熱係數的類鑽石基板,可降低溫度約17.7%,熱阻約降14.3%,一階散熱之LED結構銅結合鑽石基板整體而言可以把溫度下降33.2%,熱阻約降98.1%,具有高反射鏡的散熱銅基座比較後,不僅證實了散熱銅基座,可以提供更有效的熱傳導路徑來擴散晶粒內部所產生的熱能,在光學方面設計不同的光杯形貌如:碗杯與圓弧型,出光角可由15度-30度的差別,可提供不同光形,並應用於不同之光電產品。
Recently the technology of light-emitting diode has advanced to new high-tech products. The main technology of light-emitting is applying on how to get to high thermal dissipation and control the light shape. We all know the external quantum efficiency of light emitting diode is about 15~20%, and nearly 80~85% power is converted into heat. The heat generated by the LED chip must be effectively dissipated to the environment otherwise the junction temperature will influence the wavelength shifting, output light intensity, and lifetime. The purpose of using metal electroplating and photo process is to design the high thermal dissipation structure through copper and its characteristic of high thermal conductivity (401W/m.K). Copper can be easily dissipated unlike the convention of LED package which uses the sliver glue and AgSnCu to bond heat and is easily silt up by this bonding source. Through the electroplate technique, we fabricated Cu heat dissipation which has a thermal conduct of 401 W/m•°C. The microstructure on the junction temperature of LEDs and fabrication of Cu heat sink effect will be discussed later. In addition, the high thermal dissipation structure could influence different light shape as well as bond bases and glue of different thermal conductivity aforementioned above which will too be discussed. For example: Diamond heat sink、silver glue、and AgSnCu glue. The measurement of infrared thermal images and thermal resistance resulted in a higher temperature. When comparing the conventional packages, the die with a thickness difference of 50 um will result in a decrease of 2.3% at best of the thermal dissipation structure, while a new design will give a decrease of 14.9% of high thermal conductivity (>500W/m.K), glue at best will give a decrease of 14.7% of high thermal conductivity, and heat sink at best can result in a decrease of 17.7%. Lastly, the high thermal dissipation structure combined with heat sink can result in a total 33.2% decrease. The design created through my research will give a better structure of thermal dissipation.
URI: http://hdl.handle.net/11455/4225
其他識別: U0005-1808200923322100
文章連結: http://www.airitilibrary.com/Publication/alDetailedMesh1?DocID=U0005-1808200923322100
Appears in Collections:精密工程研究所

文件中的檔案:

取得全文請前往華藝線上圖書館



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.