Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/4225
DC FieldValueLanguage
dc.contributor武東星zh_TW
dc.contributorDong-Sing Wuuen_US
dc.contributor林恒毅zh_TW
dc.contributorHeng-I Linen_US
dc.contributor.advisor洪瑞華zh_TW
dc.contributor.advisorRay-Hua Hongen_US
dc.contributor.author林敬倍zh_TW
dc.contributor.authorLin, Ching-Beien_US
dc.contributor.other中興大學zh_TW
dc.date2010zh_TW
dc.date.accessioned2014-06-06T06:27:18Z-
dc.date.available2014-06-06T06:27:18Z-
dc.identifierU0005-1808200923322100zh_TW
dc.identifier.citation[1] M. Arik, J. Petroski, and S. Weaver, “Thermal Challenges in the Future Generation Solid State Lighting Application: Light Emitting Diodes,” 2002 Inter Society Conf. On Thermal Phenomena, p. 113, 2002 [2] J. Petroski, “Thermal Challenges Facing New Generation Light Emitting Diodes (LED) for Lighting Applications,” Solid State Lighting, Proc. of SPIE, Vol. 4776, p. 215, 2002 [3] F. M.Steranka et al., “High Power LEDs Technology Status and Market Application,” Phys. Stat. sol.(a)194, No.2, p. 380, 2002 [4] http://www.materialsnet.com.tw/DocView.aspx?id=7548 [5] H. Sugawara, M. Ishikawa, and G. Hatakoshi, “High Efficiency InGaAlP/GaAs Visible Light Emitting Diodes,” App. Phys. Lett., vol. 58, p. 1010, 1991. [6] H. Sugawara, M. Ishikawa, and G. Hatakoshi, “High Brightness InGaAlP Green Light Emitting Diodes,” App. Phys. Lett., vol. 61, p. 1752, 1992. [7] D. A. Vanderwater, I. H. Tan, G. E. Hofler, D. C. DeFevere, and F. A. Kish, “High Brightness AlGaInP Light Emitting Diodes,” IEEE., vol. 85, p. 1752, 1997. [8] S. Nakamura, M. Senoh, N. Iwasa, S. Nagahama, T. Yamada, and T. Mukai, “Superbright Green InGaN Single Quantum Well Structure Light Emitting Diodes,” Jpn. J. Appl. Phys., vol. 34, p. 1332, 1995. [9] F. A. Kish, F. M. Steranka, D. C. DeFevere, D. A. Vanderwater, K. G. Park, C. P. Kuo, T. D. Osentowski, M. J. Peanasky, J. G. Yu, R. M. Fletcher, D. A. Steigerwald, and M. G. Craford, “Very High Efficiency Semiconductor Wafer Bonded Transparent Substrate (AlxGa1–x)0.5In0.5P/GaP Light Emitting Diodes, ” Appl. Phys. Lett., vol. 64, p. 2839, 1994. [10] F. A. Kish, D. A. Vanderwater, D. C. DeFevere, D. A. Steigerwald, G. E. Hofler, K. G. Park, and F. M. Steranka, “High Reliable and Efficient Semiconductor Wafer Bonded AlGaInP/GaP Light Emitting Diodes,” Electron. Lett., vol. 32, p. 132 , 1996. [11] A. Zukauskas, M. S. Shur, and R. Gaska, “Introduction to Solid-State Lighting,” New York: Wiley and Sons Press, p. 12, 2002. [12] M. Hao, T. Sugahara, H. Sato, Y. Morishima, Y. Naoi, L. T. Romano, and S. Sakai, “Study of Threading Dislocations in Wurtzite GaN Films Grown on Sapphire by Metalorganic Chemical Vapor Deposition,” Jpn. J. Appl. Phys., vol. 37, p. 291 , 1998. [13] E. Kuokstis, C. Q. Chen, J. W. Yang, M. Shatalov, M.E. Gaevski, V. Adivarahan, and M. A. Khan, “Room Temperature Optically Pumped Laser Emission from a-plane GaN with High Optical Gain Characteristics,” Appl. Phys. Lett., vol. 84, p. 2998, 2004 [14] A. Zukauskas, M. S. Shur, and R. Gaska, “Introduction to Solid-State Lighting,” New York: Wiley and Sons Press, p. 12 , 2002. [15] S. Nakamura, and G. Fasol, “The Blue Laser Diode: GaN Based Light Emitters and Lasers,” Berlin: Springer Press, p. 10, 2000. [16] S. Nakamura, and S. F. Chichibu, “Introduction to Nitride Semiconductor Blue Laser Diode and Light Emitter Diodes,” London:Taylor and Francis Press, p. 45, 2000. [17] F. Wall, P. Martin, G. Harbers, “High Power LED Package Requirement,” Third International Conference on Solid State Lighting, Proc. Of SPIE, Vol. 5187, p. 85, 2004 [18] OIDA, “Light Emitting Diodes (LEDs) for General Illumination,” An OIDA Technology Roadmap Update 2002 [19] N. Narendran and Y. Gu, “Life of LED-Based White Light Sources,” Journal of Display Technology, IEEE/OSA, Vol. 1, p. 1,2005 [20] http://www.neopac-lighting.com/index.php/Technology/NeoPac- Universal-Platform.html [21] 史光國, 半導體發光二極體及固態照明, 全華科技, p.2.1, 2005. [22] 黃調元, “半導體元件物理與製作技術,” 國立交通大學出版社,p. 41, 2003. [23] Y. Xi and E. F. Schubert, “Junction Temperature Measurement in GaN Ultraviolet Light Emitting Diodes Using Diode forward Voltage Method,” Appl. Phys. Lett. vol. 85, p. 2163, 2004. [24] Y. Xi, J. Q. Xi, T. Gessmann, J. M. Shah, J. K. Kim, E. F. Schubert, A. J. Fischer, M. H. Crawford, K. H. A. Bogart, and A. A. Allerman, “Junction and Carrier Temperature Measurements in Deep Ultraviolet Light Emitting Diodes Using Three Different Methods,” Appl. Phys. Lett. vol. 86, p. 1907, 2005. [25] P. Incropera and P. DeWitt, “Introduction To Heat Transfer 4th,” New York:John Wiley & Sons Press, p. 13, 2001. [26] J. Moran and N, Shapiro, “Fundamentals of Engineering Thermodynamics 6th,” New York:John Wiley & Sons Press, p. 110, 2004. [27] Reference Design RD25,“Luxeon Reliability,”www.lumiled.com [28] P. Incropera, P. DeWitt, L. Bergman, S. Lavine, “Fundamentals of Heat and Mass Transfer 4th,” New York:John Wiley & Sons Press, p. 69, 1997. [29] http://www.lumileds.com/ [30] http://www.rapi-tech.com.tw [31] http://www.chct.com.tw/TVS/TVS.HTM [32] 蕭翔允,“高散熱發光二極極體構裝設計與實做研究,”國立中興大學材料工程學系碩士論文,民國97年zh_TW
dc.identifier.urihttp://hdl.handle.net/11455/4225-
dc.description.abstract一般而言,LED(發光二極體)輸入電能只有15%~20%轉換成光能,約有將近80%~85%輸入能量被轉換成熱能,這些熱能如無法適時排出,將使元件溫度升高,進而影響其發光強度及使用壽命,導致發光元件衰退。 本研究主要探討一階散熱之LED銅結構:即氮化鎵發光二極體背面設計具結構的散熱機構,利用精密電鑄技術研製LED散熱結構,藉由銅(400 W/m.k)的高熱傳導特性,直接將元件內部之熱能傳導至散熱基座上,有別於現今LED封裝技術,現有LED封裝是利用銀膠或銀錫銅做為固晶膠,直接將晶粒固晶於導線架或散熱基座上,然而本論文主要分析一階散熱之LED銅結構封裝比較於傳統封裝方式熱的影響,探討一階散熱之LED銅結合不同的散熱基座與不同的熱傳導係數之固晶膠,針對MCPCB(金屬絕緣基板)、鑽石基座、銀膠、銀錫銅相互影響。使LED封裝結構每一層熱阻最佳化設計,從藍寶石基板的厚薄到不同的熱傳導係數固晶膠與基板探討,對發光二極體接面溫度的整體影響。在散熱方面藉由紅外線量測與暫態熱阻量測儀,具有一階散熱之LED結構與原始封裝結構(晶粒厚度100 um、固晶膠:銀錫銅、散熱基板:MCPCB)進行比較,一階散熱之LED結構可減少溫度約14.9%,熱阻約減少48.7%,另外在不同厚度的藍寶石基板結合一階散熱之LED結構中,當厚度相差50 um下,溫度減少2.3%,證實較薄基板可降低溫度,但只是改善有限。另一方面,探討一階散熱之LED結構達最佳化散熱,在比較原始一階散熱之LED結構系統(晶粒厚度100 um、一階散熱銅、銀錫銅與散熱基板:MCPCB)中、若使用較高熱傳導係數(>500W/m.K)的固晶膠,則可減少溫度約14.7%,熱阻約減少66.6%,若使用高導熱係數的類鑽石基板,可降低溫度約17.7%,熱阻約降14.3%,一階散熱之LED結構銅結合鑽石基板整體而言可以把溫度下降33.2%,熱阻約降98.1%,具有高反射鏡的散熱銅基座比較後,不僅證實了散熱銅基座,可以提供更有效的熱傳導路徑來擴散晶粒內部所產生的熱能,在光學方面設計不同的光杯形貌如:碗杯與圓弧型,出光角可由15度-30度的差別,可提供不同光形,並應用於不同之光電產品。zh_TW
dc.description.abstractRecently the technology of light-emitting diode has advanced to new high-tech products. The main technology of light-emitting is applying on how to get to high thermal dissipation and control the light shape. We all know the external quantum efficiency of light emitting diode is about 15~20%, and nearly 80~85% power is converted into heat. The heat generated by the LED chip must be effectively dissipated to the environment otherwise the junction temperature will influence the wavelength shifting, output light intensity, and lifetime. The purpose of using metal electroplating and photo process is to design the high thermal dissipation structure through copper and its characteristic of high thermal conductivity (401W/m.K). Copper can be easily dissipated unlike the convention of LED package which uses the sliver glue and AgSnCu to bond heat and is easily silt up by this bonding source. Through the electroplate technique, we fabricated Cu heat dissipation which has a thermal conduct of 401 W/m•°C. The microstructure on the junction temperature of LEDs and fabrication of Cu heat sink effect will be discussed later. In addition, the high thermal dissipation structure could influence different light shape as well as bond bases and glue of different thermal conductivity aforementioned above which will too be discussed. For example: Diamond heat sink、silver glue、and AgSnCu glue. The measurement of infrared thermal images and thermal resistance resulted in a higher temperature. When comparing the conventional packages, the die with a thickness difference of 50 um will result in a decrease of 2.3% at best of the thermal dissipation structure, while a new design will give a decrease of 14.9% of high thermal conductivity (>500W/m.K), glue at best will give a decrease of 14.7% of high thermal conductivity, and heat sink at best can result in a decrease of 17.7%. Lastly, the high thermal dissipation structure combined with heat sink can result in a total 33.2% decrease. The design created through my research will give a better structure of thermal dissipation.zh_TW
dc.description.tableofcontents第一章 緒論-----------------------------------------1 (一) 前言-------------------------------------------1 (二) 發光二極體的歷史-------------------------------1 (三) 研究動機---------------------------------------3 (四) 論文架構---------------------------------------5 第二章 理論基礎與文獻回顧 ---------------------------7 (一) 發光二極體之發光機制 ---------------------------7 (二) 光度計量與單位---------------------------------9 (三) 熱效應對發光二極體之影響-----------------------11 1. 熱力學定律-----------------------------------------12 2. 熱學模式-------------------------------------------12 3. 熱分析材料基本屬性---------------------------------13 4. 熱阻之定義與計算-----------------------------------14 5. 發光二極體散熱技術---------------------------------16 (四) 量測系統---------------------------------------17 1. 光學量測-------------------------------------------17 2. 熱學量測-------------------------------------------19 第三章 高散熱LED封裝最佳化設計與模擬分析------------21 (一) 前言-------------------------------------------21 (二) 高散熱LED封裝設計------------------------------21 (三) 藍寶石晶粒厚度參數設計-------------------------22 (四) 散熱基座與散熱形貌參數設計---------------------22 (五) 固晶材料參數設計-------------------------------23 (六) 散熱基座參數設計-------------------------------23 (七) 光杯模擬參數設計-------------------------------23 (八) 模擬結果與分析---------------------------------24 1. Ansys模擬結果-------------------------------------24 2. TracePro模擬結果----------------------------------26 第四章 高散熱LED最佳化製程----------------------------28 (一)前言--------------------------------------------28 (二) 高散熱LED元件製程------------------------------28 1. 實驗流程-------------------------------------------28 (1)高散熱晶粒製作-----------------------------------29 (2)一階散熱的製作-----------------------------------29 2. 光杯製作實驗流程-----------------------------------32 第五章 結果與討論-------------------------------------34 (一) 前言-------------------------------------------34 (二) 量測結果---------------------------------------34 1. 不同藍寶石厚度之銅基座溫度關係量測-----------------34 2. 不同底面積形貌對溫度關係量測-----------------------35 3. 探討不同的熱傳導係數的膠體之溫度關係量測-----------35 4. 探討不同封裝基板之溫度、效率與熱阻關係量測---------36 5. 散熱基板應用於紫外線與紅外線元件溫度之關係---------38 6. 應用於陣列式LEDs模組-------------------------------39 7. 一階散熱結構可靠度測試-----------------------------39 (三)光學量測----------------------------------------39 1. 不同光杯形貌光通量量測-----------------------------39 2. 不同光杯形貌光強度量測-----------------------------40 3. 不同光杯形貌光場量測-------------------------------40 4. 不同光杯形貌光角度量測-----------------------------40 (四) 整體散熱分析-----------------------------------41 第六章 結論與未來展望---------------------------------46 (一) 結論-------------------------------------------46 (二) 未來展望---------------------------------------46 參考文獻----------------------------------------------48zh_TW
dc.language.isoen_USzh_TW
dc.publisher精密工程學系所zh_TW
dc.relation.urihttp://www.airitilibrary.com/Publication/alDetailedMesh1?DocID=U0005-1808200923322100en_US
dc.subjectlight-emitting dioden_US
dc.subject發光二極體zh_TW
dc.subjectGaNen_US
dc.subjectelectroplatingen_US
dc.subjectlight shapeen_US
dc.subjecthigh dissipation structureen_US
dc.subject氮化鎵zh_TW
dc.subject精密電鑄技術zh_TW
dc.subject散熱結構zh_TW
dc.subject光杯zh_TW
dc.title高功率藍光發光二極體之熱管理最佳化設計與製作zh_TW
dc.titleDesign and Fabrication of Optimized Thermal Management for High Power Blue LEDs Applicationsen_US
dc.typeThesis and Dissertationzh_TW
Appears in Collections:精密工程研究所
文件中的檔案:

取得全文請前往華藝線上圖書館



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.