Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/4230
標題: 超音波奈米粉末研磨之新型機構設計
A novel tool system for ultrasonic vibration grinding of nano particles
作者: 林耀堂
Lin, Yao-tang
關鍵字: piezoelectric ceramic
壓電材料
ultrasonic
nano powder
超音波
位移放大機構
超音波奈米分散
奈米粉末制程技術
出版社: 精密工程學系所
引用: 國科會精密儀器發展中心,2003,微機電系統技術與應用,初版,精密儀器發展中心出版,新竹市。 超音波工學理論及實務,1992,復漢出版社,再刷版,賴耿陽著作,台南市。 財團法人精密機械研究發展中心,2006,奈米製程技術與應用,精密機械研究發展中心技術報告,詹子奇著作,台中市。 馬振基 主編,“奈米材料科技原理與應用”,全華科技圖書,臺北,民國92年。 張立德、牟季美,“奈米材料和奈米結構”,滄海書局,台中,民國91年。 黃惠忠 等編著,“奈米材料分析”,滄海書局,台中,民國93年。 賴建宇,“高強度超音波與氣泡空蝕場應用於奈米粉體制備與養分萃取”,國立成功大學/機械工程學系,碩士論文,民國94年。 陳英仁,“奈米粉體分散研磨及介面改值技術之探討” 廣融貿易公司, 2006。 Zhao,Chunsheng., Ultrasonic Motor Technologies and Applications ,2007.8,科學出版社,北京。 Bangviwat, H. K. Ponnekanti and R. D. Finch, Optimizing the performance of piezoelectric drivers that use stepped horns, The Journal of the Acoustical Society of America, 90 (1991) 1223-1229. V. Abramov, High-intensity ultrasonics : theory and industrial applications, Gordon and Breach Science Publishers, The Netherlands, 1998. Deb, A. Pratap, S. Agarwal and T. Meyarivan, A fast and elitist multiobjective genetic algorithm: NSGA-II, IEEE Transactions on Evolutionary Computation, 6 (2002) 182-197. Charles, R. Williams and T. L. Poteat, Micromachined structures in ophthalmic microsurgery, Sensors and Actuators, A21–A23 (1990) 263-266. Eisner, Design of sonic amplitude transformers for high magnification, The Journal of the Acoustical Society of America, 35 (1963) 1367-1377. Fu, T. Hemsel and J. Wallaschek, Piezoelectric transducer design via multiobjective optimization, Ultrasonics, 44 (2006), e747-e752. Granet, G. L. James, R. Bolton and G. Moorey, A smooth-walled spline-profile horn as an alternative to the corrugated horn for wide band millimeter-wave applications, IEEE Transactions on Antennas and Propagation, 52 (2004) 848-854. Hu, K. Nakamura and S. Ueha, An analysis of a noncontact ultrasonic motor with an ultrasonically levitated rotor, Ultrasonics, 35 (1997) 459-467. Hunter, M. Lucas, I. Watson and R. Parton, A radial mode ultrasonic horn for the inactivation of Escherichia coli K12, Ultrasonics Sonochemistry, 15 (2008) 101-109. Iula, G. Caliano, A. Caronti and M. Pappalardo, A power transducer system for the ultrasonic lubrication of the continuous steel casting, IEEE Transactions on Evolutionary Computation, 50 (2003) 1501-1508. Iula, S. Pallini, F. Fabrizi, R. Carotenuto, N. Lamberti and M. Pappalardo, A high frequency ultrasonic bistoury designed to reduce friction trauma in cystectomy operations, in: Proceedings of 2001 IEEE Ultrasonics Symposium, 2001, pp. 1331-1334. Iula, L. Parenti, F. Fabrizi and M. Pappalardo, A high displacement ultrasonic actuator based on a flexural mechanical amplifier, Sensors and Actuators A, 125 (2006) 118-123. R.V. Kumar, O. Palchik, Yu. Koltypin, Y. Diamant, A. Gedanken, “ Sonochemical synthesis and characterization of Ag2S/PVA and CuS/PVA nanocomposite, ” Ultrasonics Sonochemistry 9(2),pp.65-70 (2002). Yu. Koltypin, O. Palchik, A. Gedanken, R.V. Kumar, “ Preparation and characterization of nickel-polystyrene nanocomposite by ultrasound irradiation, ” Journal of Applied Polymer Science 86(1), pp.160-165(2002). H.-L. Li, Y.-C. Zhu, S.-G. Chen, O. Palchik, J.-P. Xiong, Yu. Koltypin, Y. Gofer, A. Gedanken, “ A novel ultrasound-assisted approach to the synthesis of CdSe and CdS nanoparticles, ” Journal of Solid State Chemistry 172(1), pp.102-110 (2003). Y. Mizukoshi, K. Okitsu, Y. Maeda, T.A. Yamamoto, R. Oshima, Y. Nagata, “ Sonochemical preparation of bimetallic nanoparticles of gold/palladium in aqueous solution, ” Journal of Physical Chemistry B 101(36), pp.7033-7037 (1997). V. Stengl, S. Bakardjieva, M. Marikova, P. Bezdicka, and J. Subrt, “ Magnesium oxide nanoparticles prepared by ultrasound enhanced hydrolysis of Mg-alkoxide, ” Materials letters 57(24-25), pp.3998-4003 (2003). G. Pang, X. Xu, V. Markovich, S. Avivi, O. Palchik, Yu. Koltypin, G. Gorodetsky, Y. Yeshurun etc. “ Preparation of nanoparticles by sonoication-assisted coprecipitation “,Materials Research Bulletin 38(1), pp.11-16(2003). Y. Mizukoshi, R. Oshima, Y. Maeda, Y. Nagata, “ Preparation of platinum nanoparticles by sonochemical reduction of Pt(Ⅱ) ion, ” Langmuir 15(8), pp.2733-2737 (1999). W. Chen, W. Cai., L. Zhang, G. Wang, L. Zhang, “ Sonochemicla processes and formation of gold nanoparticles within pores of mesoporous silica, ” Journal of Colloid and Interface Science 238(2), pp.291-295 (2001). Lin, L. Y., Shen, J. L., Lee, S. S., and Wu, M. C., 1996, “Surface-micromachined Micro-XYZ Stages for Free-space Micro-optical Bench,” IEEE/LEOS Summer Topical Meetings, Keystone,USA. Wu, M. C., Lin, L. Y., Lee, S. S., and Pister, K. S. J., 1995, “Micromachined Free-space Integrated Micro-optics,” Sensors and Actuators A, vol. 50, pp. 127-134. Ikuta, K., Maruo, S., and Kojima, S., 1998, “New Micro Stereo Lithography for Freely Movable 3D Micro Structure,” Micro Electro Mechanical Systems, Proceedings of MEMS 98, pp. 290-295. REN. Zhen, ZHENG. Shaohua, JIANG. Fenghua, WANG. Jieqiang, WANG. Xuemeni, Analysis of gactors affecting preparation ofSiO2 nanoparticles by Ultrasonic-mechanical method , Jour of Chemical Industry and Engineering (China) ,Vol.57,2006
摘要: 本文主要是探討壓電材料所產生之振動如何運用於奈米研磨技術上。利用壓電材料高效率能量轉換特質及振動理論與超音波理論所發展的技術,在治具設計與機構創新是屬於全新領域,此研究先進行軟體模擬與驗證,之後進行機構的製造、組裝和測試用於乾濕式奈米研磨機械加工,此超音波研磨機構是壓電式致動器與位移放大機構之結合體,在加工過程所產生之音波效應,也能有效分散奈米粉末的團聚現象。 本研究探討超音波放大機構之振動位移量及以活性炭奈米粉末實驗來判斷是否具有最佳商業產品之特性,在分析模擬方面,運用有限元素分析模擬軟體來進行位移放大機構模擬,且分析模擬壓電式致動器與位移放大機構之位移量;並測試實際加工之奈米粉末之研磨微細化之特性,此研究並提出相關實驗機構設備,實驗載具與奈米粉末之製程技術,誠能帶動奈米加工機械往更節能更新穎之科技發展。
In this thesis, a piezoelectric actuator is used to generate ultrasonic vibration for nano-grinding. The actuator includes a piezoceramic Langevin transducer, a displacement amplification horn, a tool attached to one end of the horn for grinding. The working frequency of the transducer is 15 kHz. This study first conducts a series of simulation for the design and analysis of the displacement amplification horn and grinding tool of a nano-grinding machine. The machine is then fabricated and a series of experiments for nano-particle grinding are carried out .
URI: http://hdl.handle.net/11455/4230
其他識別: U0005-2108200910360800
文章連結: http://www.airitilibrary.com/Publication/alDetailedMesh1?DocID=U0005-2108200910360800
Appears in Collections:精密工程研究所

文件中的檔案:

取得全文請前往華藝線上圖書館

Show full item record
 
TAIR Related Article
 
Citations:


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.