Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/4238
DC FieldValueLanguage
dc.contributor洪瑞華zh_TW
dc.contributor吳清沂zh_TW
dc.contributor賴新一zh_TW
dc.contributor.advisor武東星zh_TW
dc.contributor.author黃洪濱zh_TW
dc.contributor.authorHuang, Hung-Pingen_US
dc.contributor.other中興大學zh_TW
dc.date2010zh_TW
dc.date.accessioned2014-06-06T06:27:20Z-
dc.date.available2014-06-06T06:27:20Z-
dc.identifierU0005-3107200914480600zh_TW
dc.identifier.citation[1] 殷孟雲,“噴墨印表機設計原理(修定版),”全華科技圖書股份有限公司, 2005. [2] 程偉倫, “以準分子雷射托拉法製做 3D 微結構之研究,” 國立中興大學機械所, 2001. [3] 廖偉辰, “牛頓流體與非牛頓流體液滴碰撞之研究,”國立中正大學化學工程研究所碩士論文, 2003. [4] 蔡銘煌, “液滴撞擊半圓形液膜之現象觀察與研究,” 國立台灣大學機械工程學研究所碩士論文, 2003. [5] 陳興華, “LCD 背光模組導光板成型模具精密蝕刻加工技術,”工業材料雜誌, 207期.pp. 96-104, 2004. [6] 吳貞欽,姜智豪,涂俊宇,王立群,張家華, “LIGA製程在導光板模具製作之應用,” 模具技術與論文發表會論文集, pp. 95-99, 2003. [7] 賴志良, ”導光板模具之微溝加工” 模具技術資訊, 101期, pp. 9-11, 2003. [8] 劉繼芳, “現代光學,” 新文京開發出板社股份有限公司, 初板, 2006. [9] 張自恭, 林奇鋒, 方育斌, ”背光模組光學設計,” 光連:光電產業技術與技術情報, 49 期, pp. 39-47, 2004. [10] 李祠澐,“液態油品撞擊高溫表面之高速影像分析研究,”崑山科技大學機械工程學系研究所碩士論文, 2006. [11] 甘惠君,王文生,黃文奎,陳方中, “利用自組裝微小透鏡陣列增加有機發光二極體的光耦合效率,” Taiwan display conference, 2006. [12] 方育斌, “LCD 背光模組之光學最佳化設計,” 國立成功大學工程科學系碩士論文, 2004. [13] M. Pasandideh-Fard, Y. M. Qiao, S. Chandra, and J. Mostaghimi, “Capillary effects during droplet impact on a solid surface,” Phys. Fluids, Vol. 8(3), pp. 650-659, 1996. [14] L. Leger, and J. F. Joanny, “Liquid spreading,” Rep. Prog. Phys. , pp.431-486, 1992. [15]J. Fukai, and Z. Zhao, and D. Poulikakos, and C. M. Megaridis, and O. Miyatake, “Modeling of the deformation of a liquid droplet impinging upon a flat surface,” Phys. Fluids A, Vol. 5 (11), pp. 2588-2599, 1993. [16] X. Zhang, and O. A. Basaran, “Dynamic surface tension effects in impact of a drop with a solid surface,” J. Colloid Interface Sci. , Vol. 187, pp. 166-178, 1997. [17] C. Pozrikdis, “The Deformation of a liquid drop moving normal to a plane wall,” J. Fluid Mech. , Vol. 215, pp. 331-363, 1990. [18] M. Marengo, and C. Tropea, “Analysis of impact of droplets on horizontal surfaces,” Exp. Fluids, Vol. 25, pp. 503-510, 2002. [19] B. L. Scheller, and D. W. Bousfield, “Newtonian drop impact with a solid surface,” AIChE Journal, Vol. 41, No. 6, pp. 1357-1367, 1995. [20] C. A. Miller, and P. Neogi, “Interfacial phenomena--equilibrium and dynamic efects,” Surfactant Science Series, Vol. 17, 1985. [21] J. Fukai, Y. Shiiba, T. Yamamoto and O. Miyatake, “Wetting effects on the spreading of a liquid droplet colliding with a flat surface experiment and modeling,” Physics of Fluids, Vol. 7, No. 2, pp. 236-247, 1995. [22] M. Rein, “Phenomena of liquid droplet impact on solid and liquid surfaces,” Fluid Dynamics Research, Vol. 12, pp. 61-93, 1993. [23] T. Mao, and D. C. S. Kuhn, and H. Tran, “Spread and rebound of liquid droplets upon impact on flat surfaces,” AIChE Journal, Vol. 43(9), pp. 2169-2179, 1997. [24] Y. Gu, and D. Li, “Liquid drop spreading on solid surfaces at low impact speeds,” colloids and surfaces A: Physicochemical and Engineering Aspects, Vol. 163, pp. 239-245, 2000. [25] H. Fujimoto, T. Ogino, H. Takuda, and N. Hatta, “Collision of a droplet with a hemispherical static droplet on a solid,” Int. J. Multiphase Flow, Vol. 27, pp. 1227-1245, 2001. [26] A.Asai, “Three-dimension calculation of bubble growth and drop ejection in bubble jet printer,” Journal of Fluids Engineering, Vol. 114, pp. 638-641, 1992. [27] C.A Bruce, “Dependence of inkjet dynamics on fluid characteristics ”, IBM Journal of Research and Development, Vol. 20, pp. 258-270, 1976. [28] N. Budgayci, D. B. Bogy and F. E. Talke, “Axisymmetric motion of radially polarized piezoelectric cylinders used in ink-jet printing,” IBM Journal of Research and Development, Vol. 27 (2), pp. 171-180, 1983. [29] Z. D. Popovic, Rrbort A. Sprague, and G. A. Neville Connell, “Technique for monolithic fabrication of microlens arrays,” Appl. Opt. , Vol. 27, No.7, pp. 1281-1297, 1988. [30] D. L. MacFarlane, V. Narayan, J. A. Tatum, W. R. Cox, T. Chen, and D. J. Hayes, “Microjet fabrication of microlens array,” IEEE Photonic Technology Letters, Vol. 6, No.9, pp. 1112-1114, 1994. [31] W. Daschner, P. Long, and R. Stein, “General aspheric refractive micro-optics fabricated by optical lithography using a high energy beam sensitive glass gray-level mask”, J. Vac. Sci. Technol. B. , Vol. 14, No. 6, pp. 3730-3733, 1996. [32] S. Lazare, J. Lopez, J. M. Turlet, M. Kufner, S. Kufner, and P. Chavel, “Microlenses fabricated by ultraviolet excimer laser irradiation of poly (methyl methacrylate) followed by styrene diffusion”, Appl. Opt. , Vol. 35, no.22, pp. 4471-4475, 1996. [33] M. Frank, M. Kufner, S. Kufner, and M. Testorf, “Microlenses in polymethyl methacrylate with high relative aperture,” Appl. Opt. , Vol. 30, No.19, pp. 2666-2667, 1991. [34] N. F. Borrlli, D. L. Morse, R. H. Bellman, and W. L. Morgan, “Photolytic technique for producing microlenses in photosensitive glass,” Appl. Opt. , Vol. 24, No. 16, pp. 2520-2525, 1985. [35] S. Zlolkowski, “Contactless embossing of microlenses a parameter study,” Opt. Eng. , Vol. 42, No. 5, pp. 1451-1455, 2003. [36] C. S. Lee, C. H. Han, “A novel refractive sillcon microlens array using bulk micromachining technology,” Sensors and Acturators A. , Vol. 88, pp. 87-90, 2001. [37] K. Zimmer, D. Hirsch, F. Bigl, “Excimer laser machining for the fabrication of analogous microstructures,” Appl. Surf. , Vol. 96-98, pp. 425-429, 1996. [38] K. Naessens, H. Ottevaere, R. Baets, P. V. Daele, and H. Thienpont, “Direct writing of microlenses In polycarbonate with excimer laser ablation,” Appl. Opt. Vol. 42, No.31, pp. 6349-6359, 2003. [39] K. Naessens, Heidi Ottevaere, P. Van Daele, R. Beats, “Flexible fabrication of microlenses in polymer layers with excimer laser ablation,” Appl. Surf. , Vol. 208-209, pp. 159-164, 2003. [40] Ph.Nussbaum et al.,“Design, fabrication and testing of microlens arrays for sensors and microsystems,” Ure Appl. Opt. , Vol. 6,pp. 617-636, 1997.zh_TW
dc.identifier.urihttp://hdl.handle.net/11455/4238-
dc.description.abstract本論文主要利用Microfab壓電式噴墨系統噴印UV 固化膠於光學級 PC及玻璃基板 (substrate) 上。利用噴印技術及膠體表面張力 (surface tension) 的物理特性來製作微透鏡陣列並應用於導光板微結構,達到抑制全反射,增加正向出光效率及均齊度。透過控製噴印液滴數、基板溫度及 UV 硬化膠黏度(10cp及20cp)可改變透鏡粒徑大小及成型厚度。以噴嘴 (nozzle) 50um噴印微透鏡,最小粒徑小於95um。此技術應用於導光板上可依需求噴印不同粒徑、厚度及間距之微透鏡陣列 (micro lens array) 以達導光板所需之最佳效果。實驗中噴印UV 固化膠微透鏡導光板樣品所得之最佳正面出光效率比較於未噴印前增加75%,實驗結果證明正面出光效率與微透鏡粒徑、厚度及填充率(fill factor)成正比。依近光源處微透鏡填充率較低作區塊劃分噴印微透鏡結構於導光板上其均齊度可達82%以上。zh_TW
dc.description.abstractThis paper mainly uses a Microfab-Inkjet piezoelectric ink-jet system to print UV adhesives on optical-grade PC and glass substrates. The physical characteristics of ink-jet technology and adhesive surface tension were used to manufacture micro lens arrays and applied to the microstructure of light-guide plates to achieve attenuated total reflection (ATR) inhibition and increase the positive light efficiency and uniformity. Through controlling the ink-jet liquid drop amount, the substrate temperature, and the UV adhesive viscosity (10cp and 20cp), the lens particle diameter size and formation height can be changed. The micro lens is printed with a 50um nozzle and a minimum diameter less than 95um. This technology is applied to light-guide plates and can achieve optimal effects by ink-jet printing micro lens arrays with different particle diameters, height, and spacing as demanded. The optimal positive light efficiency obtained by the experiment ink-jet UV adhesive micro lens light-guide plate sample was 75% greater than before ink-jet printing. The experiment results prove that there is a positive correlation between positive light efficiency and micro lens particle diameter, height, and fill factor. The uniformity of ink-jet micro lens structures on light-guide plates can reach over 82% with area divisions based on the lower fill-rate of the micro lenses near the light source.en_US
dc.description.tableofcontents目錄 封面 空白頁 書名頁 審核頁 授權書 中文摘要 i Abstract ii 誌謝 iii 目錄 iv 表目錄 vii 圖目錄 viii 第一章 緒論 1 1-1 前言 1 1-2 研究動機與目的 1 1-3 文獻回顧 2 1-4 論文架構 7 第二章 相關技術 8 2-1 噴墨種類與技術 8 2-1-1 熱氣泡式噴墨技術 8 2-1-2 壓電式噴墨技術 8 2-1-3 靜電式噴墨技術 9 2-2 折射式微透鏡製造技術 9 2-2-1 熱熔法 9 2-2-2 微液滴法 9 2-2-3 灰階光罩法 10 2-2-4 體積膨脹法 10 2-2-5 光熱法 10 2-2-6 非接觸壓模成形法 10 2-2-7 體型加工技術 11 2-2-8 準分子雷射微細加工 11 2-3 導光板製造技術 12 2-3-1 印刷式 12 2-3-2 蝕刻技術 12 2-3-3 LIGA製程 12 2-3-4 微切削加工熱熔法 12 第三章 微透鏡原理及導光板光學理論 14 3-1 前言 14 3-2 微透鏡原理 14 3-3 導光板光學設計基本原理 16 3-4 導光板設計方法 17 3-4-1 狹窄化方式 17 3-4-2 微結構方式 18 3-4-3 加入擴散網點之方式 18 第四章 實驗設備與步驟 20 4-1 微滴定式微透鏡表面成型原理 20 4-2 實驗設備簡介 20 4-3 實驗步驟 22 第五章 實驗檢測與結果討論 25 5-1 不同黏度之 UV 固化膠於噴印機台液滴狀態 25 5-2 微透鏡粒徑及厚度 27 5-3 微透鏡之成型輪廓 29 5-4導光板出光效率量測 31 第六章 結論與未來展望 34 6-1 結論 34 6-2 未來展望 35 參考文獻 36 表目錄 表(4-1) 35℃ 10cp UV 膠調變 Droplet Counts Sample 表 40 表(4-2) 45℃ 10cp UV 膠調變 Droplet Counts Sample 表 41 表(4-3) 60℃ 10cp UV 膠調變 Droplet Counts Sample 表 42 表(4-4) 70℃ 10cp UV 膠調變 Droplet Counts Sample 表 43 表 ( 4-5 ) 不同間距及液滴數噴印導光板Sample 表 44 表 (5-1) 噴印 10 cp UV 固化膠於不同溫度PC Substrate 之粒徑 45 表(5-2)噴印 20 cp UV 固化膠於不同溫度PC Substrate 之粒徑 46 表(5-3)噴印 20&10 cp UV 固化膠於70℃ PC Substrate 之厚度 47 表(5-4)不同噴印參數之亮度 48 表(5-5)不同噴印參數之量測亮度 48 表(5-6)不同區塊之間距及滴數 49 表(5-7)區塊劃分噴印導光板量測亮度 49 圖目錄 圖(1-1)液滴接觸角及固/液/氣示意圖 50 圖(2-1)噴墨印表機分類示意圖. 50 圖(2-2)熱氣泡式噴墨系統結構圖 51 圖(2-3)壓電式噴墨系統結構圖 51 圖(2-4)靜電式噴墨系統結構圖 51 圖(2-5)熱熔法示意圖 52 圖(2-6)微液滴法示意圖 52 圖(2-7)輝階光罩法流程圖 53 圖(2-8)熱熔法示意圖 53 圖(2-9)體積膨脹法示意圖 54 圖(2-10)非接觸壓模成形法示意圖 54 圖(2-11)體型加工技術示意圖 54 圖(2-12)準分子雷射拖曳法示意圖 55 圖(2-13)準分子雷射同軸心多重繞行法示意圖 55 圖(3-1)微透鏡示意圖 56 圖(3-2)Snell''s 原理示意圖 56 圖(3-3)全反射示意圖 57 圖(3-4)導光板光線射出示意圖 57 圖(3-5)狹窄化方法中光之行進路線隨結構之改變情形 58 圖(3-6)微結構中光之行進路線隨結構之改變情形 58 圖(3-7)下微結構中光之行進路線隨結構之改變情形 58 圖(3-8)擴散點方法中光之行進路線隨擴散點改變之情形 58 圖(4-1)Micro-fab Inkjet System. 59 圖(4-2)OPAS TX-500 UV 光源機 59 圖(4-3)STM-6 Microscope 60 圖(4-4)n&k NKT-1280膜厚、折射係數量測儀 60 圖(4-5)FTA-2000 Contact angle measurement system 60 圖(4-6)Wyko NT1100光學輪廓儀 61 圖(4-7)Photo Research PR-650 亮度計 61 圖(4-8)0.8mm PC Substrate 穿透度及N 值量測結果 62 圖(4-9)實驗步驟流程圖 63 圖(4-10)Inkjet system 參數設定圖 64 圖(4-11)Inkjet system 參數調整步驟流程圖 65 圖(4-12)Inkjet System 衛星點狀態圖 66 圖(4-13)透鏡間距(Space)示意圖 66 圖(4-14)Backlight Module 配件圖 66 圖(4-15)光源為CCFL不同半徑之均一性網點分佈之輝度比較 67 圖(5-1)10 cp UV 固化膠噴印參數值 67 圖(5-2)Dispensing of 10 cp UV Resin drops at 1.5KHz 68 圖(5-3)Inkjet system Tip 移動 1mm 位移圖 68 圖(5-4)20 cp UV 固化膠噴印參數值 68 圖(5-5)Dispensing of 20 cps UV Resin drops at 1.5KHz 69 圖(5-6)20 cp UV 固化膠噴印參數值 69 圖(5-7)Dispensing of 25 cps UV Resin drops at 1.5KHz 70 圖(5-8)10 cp UV 固化膠噴印於不同加熱溫度之PC Substrate 粒徑變化趨式圖 70 圖(5-9)20 cp UV 固化膠噴印於不同加熱溫度之PC Substrate 粒徑變化趨式圖 71 圖(5-10)20 cp UV 固化膠於PC & Glass Substrate 接觸角 71 圖(5-11)噴印於 PC & Glass 之粒徑變化比較圖 72 圖(5-12)噴印 20cp UV 固化膠於改變溫度之 Glass Sub.之粒徑比較圖 73 圖(5-13)微透鏡成型粒徑 & 厚度之比較圖 73 圖(5-14)Droplet Count (1~6)之微小透鏡陣列OM 圖 74 圖(5-15)Droplet Count (11&21)之微小透鏡陣列OM 圖 74 圖(5-16)液滴撞擊室溫Substrate表面時之動態圖 74 圖(5-17)One Droplet 液滴成型量測曲線圖 73 圖(5-18)35 ℃ one droplet液滴成型量測曲線圖 75 圖(5-19)70 ℃ 2Droplets成型量測曲線圖 76 圖(5-20)70 ℃ 3Droplets 成型量測曲線圖 76 圖(5-21)70 ℃ 5 Droplets 成型量測曲線圖 77 圖(5-22)70 ℃ 10 Droplets 成型量測曲線圖 77 圖(5-23)70 ℃ 15 Droplets成型量測曲線圖 78 圖(5-24)70 ℃ 20 Droplets成型量測曲線圖 79 圖(5-25)70 ℃ 25 Droplets 成型量測曲線圖 80 圖(5-26)70 ℃ 30 Droplets 成型量測曲線圖 81 圖(5-27)70 ℃ 11 Droplets Array成型3D 圖 82 圖(5-28)15 Droplets Array成型3D 圖 83 圖(5-29)20 Droplets Array成型3D 圖 84 圖(5-30)均齊度量測點位示意圖 85 圖(5-31)導光板區域劃分及微結構示意圖 85 附錄 A:亮度計量測數據(LGP中心點) 86 附錄 B:亮度計量測數據(分區塊 9 點量測結果) 87 附錄 C:Inkjet Coating UV 膠 Information 88 附錄D:PC & Glass 表面張力 89zh_TW
dc.language.isoen_USzh_TW
dc.publisher精密工程學系所zh_TW
dc.relation.urihttp://www.airitilibrary.com/Publication/alDetailedMesh1?DocID=U0005-3107200914480600en_US
dc.subjectmicro lensen_US
dc.subject微透鏡zh_TW
dc.subjectlight-guide plateen_US
dc.subjectpiezoelectricen_US
dc.subjectUV adhesiveen_US
dc.subject導光板zh_TW
dc.subject壓電式zh_TW
dc.subjectUV 固化膠zh_TW
dc.title以噴墨系統噴印UV固化膠微透鏡及導光板微結構之探討zh_TW
dc.titleFabrication of UV-resin Microlens by Inkjet Printing and Its Application to Microstructure Arrays of Light-guiding Platesen_US
dc.typeThesis and Dissertationzh_TW
Appears in Collections:精密工程研究所
文件中的檔案:

取得全文請前往華藝線上圖書館

Show simple item record
 
TAIR Related Article
 
Citations:


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.