Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/4242
標題: 微透鏡仿生複眼影像擷取系統之研究
Research of Microlens Bionic Compound Eye for Imagery Capture System
作者: 劉俊宏
Liu, Chun-Hung
關鍵字: artificial compound eye
人工複眼
microlens array
MOEMS
imagery system
微透鏡陣列
微光機電系統
影像系統
出版社: 精密工程學系所
引用: [1]M. F. Land, “Visual acuity in insects,” Annu. Rev. Entomol., vol. 42, pp. 147-177, 1997. [2]J.W. Duparre and F.C. Wippermann, “Topical review: Micro-optical artificial compound eyes,” Bioinspiration and Biomimetics, vol. 1, pp. R1-R6, 2006. [3]J. Tanida, T. Kumagai, K. Yamada, S. Miyatake, K. Ishida, T. Morimoto, N. Kondou, D. Miyazaki and Y. Ichioka, “Thin observation module by bound optics (TOMBO): concept and experimental verification,” Applied Optics, vol. 40, pp. 1806-1813, 2001. [4]S. Sinzinger and J. Jahns, Microoptics, WILEY-VCH Verlag GmbH, Weinheim, pp. 85-103, 1999. [5]Z. D. Popovic, R. A. Sprague and G. A. N. Connell, “Technique for the monolithic fabrication of microlens arrays,” Applied Optics, vol. 27, pp. 1281-1284, 1988. [6]Ph Nussbaum, R Volkel, H P Herzig, M Eisner and S Haselbeck, “Design, fabrication and testing of microlens arrays for sensors and microsystems,” Pure Appl. Opt., vol. 6, pp. 617-636, 1997. [7]梁逸平,熔融法折射式微透鏡陣列之設計製造與檢測,中央大學光電科學研究所碩士論文,2001。 [8]W. R. Cox, T. Chen and D. Hayes, “Micro-optics fabrication by ink-jet printing,” Optics & Photonics News, vol. 12, pp. 32-35, 2001. [9]C. S. Lee and C.H. Han, “A novel refractive silicon microlens array using bulk micromachining technology,” Sensors and Actuators A, vol. 88, pp.87-90, 2001. [10]M. C. Hutley, “Optical techniques for the gereration of microlens arrays,” Journal of Modern Optics, vol. 37, pp. 253-265, 1990. [11]R. Horisaki, S. Irie, Y. Ogura and J. Tanida, “Three-dimensional information acquisition using a compound imaging system,” Opt. Rev., vol. 14, pp. 347-350, 2007. [12]J. Duparre, P. Dannberg, P. Schreiber, A. Brauer and A. Tunnermann, “Artificial apposition compound eye fabricated by micro-optics technology,” Applied Optics, vol. 43, pp. 4303-4310, 2004. [13]J. Duparre, P. Dannberg, P. Schreiber, A. Brauer and A. Tunnermann, “Thin compound-eye camera,” Applied Optics, vol. 44, pp. 2949-2956, 2005. [14]J. Duparre, P. Schreiber and R. Volkel, “Theoretical analysis of an artificial superposition compound eye for application in ultra flat digital image acquisition devices,” Proc. of SPIE, vol.5249, pp. 408-418, 2004. [15]J. Kim, K. H. Jeong and L. P. Lee, “Artificial ommatidia by self-aligned microlenses and waveguides,” Opt. Lett., vol.30, pp. 5-7, 2005. [16]K. H. Jeong, J. Kim and L. P. Lee, “Biologically inspired artificial compound eyes,” Science , vol. 312, pp. 557-561, 2006. [17]宋慧琴,眼應用光學基礎,新文京開發出版股份有限公司,2007。 [18]耿繼業、何建娃,幾何光學,全華科技圖書股份有限公司,2001。 [19]E. Hecht, Optics, Addison Wesley, Adelphi University, 2002. [20]莊達人,VLSI製造技術,高立圖書有限公司,2000。 [21]謝昇融,微型醫用鎳質霧化器製作技術研究,國立中興大學碩士論文,2009。 [22]黃俊貴,低電壓驅動之可變焦液態透鏡模組之研究,國立中興大學碩士論文,2009。 [23]丁群修,可變焦液體透鏡之製程研發,國立中興大學碩士論文,2005。
摘要: 本研究目標為開發仿生複眼曲面微透鏡陣列,作為微小影像擷取裝置之實現。以微影技術與電鑄技術製作出平面微透鏡陣列模仁,並且以彈性透明膠(PDMS)為材料翻模,得到平面微透鏡陣列薄膜,接著製作一個上方開孔的PDMS腔體,將翻模後的PDMS平面微透鏡陣列薄膜倒置,黏貼於腔體上方成為密封腔體,接著用抽氣的方式使腔體內外壓力不同,導致平面微透鏡陣列變形為曲面微透鏡陣列,最後將曲面微透鏡陣列與CMOS影像感測器結合,完成微小影像擷取裝置,此系統的視場角可達到62°。本研究成功製作出同位的曲面微透鏡陣列,具有製程簡易、模仁可重複使用、成型快速等優點,開創此微小影像擷取裝置之核心技術。
The research goal is to develop a bionic compound eye with curved microlens array. It can be used as the implementation of miniaturized imagery capture systems. In this study, lithography and electroforming technology were used to fabricate planar microlens array mold insert and PDMS was the material for replicating planar microlens array membrane. Then the planar microlens array membrane was placed on a top opening chamber in PDMS (replicated from a plastic mold). The membrane was used to paste on the top opening chamber and formed a sealed chamber. A syringe was used to evacuate the air in the chamber and caused pressure difference in the chamber resulted in the membrane deformation. The deformed membrane with microlens array has the curvature to collect images. It was combined with the CMOS image sensor to capture images. The FOV of the system is 62. This study successfully fabricated the apposition microlens array, which have the advantages of simple process, the mold can be reused and rapid forming. The study explored the key technology for miniaturized imagery capture devices.
URI: http://hdl.handle.net/11455/4242
其他識別: U0005-0107201015205700
文章連結: http://www.airitilibrary.com/Publication/alDetailedMesh1?DocID=U0005-0107201015205700
Appears in Collections:精密工程研究所

文件中的檔案:

取得全文請前往華藝線上圖書館



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.