Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/4245
標題: 具反射鏡與散熱基板之砷化鎵薄膜太陽電池之製作與特性研究
Study on Fabrication and Characterization of Thin Film GaAs Solar Cells with Mirror Reflector on Thermal Dissipation Substrate
作者: 林信男
Lin, Shen-Nan
關鍵字: GaAs
砷化鎵
Solar cell
Substrate transferring
Copper substrate
Thin film solar cell
太陽電池
基板轉移
銅基板
薄膜型太陽電池
出版社: 精密工程學系所
引用: [1]翁谷松, 劉乃元, 彭成鑑, 洪健龍, “太陽光電材料產業現況與發展機會”, 工業材料雜誌, 第255期, 第124-135頁, 2008. [2]A. De Vos, “Detailed balance limit of the efficiency of tandem solar cells”, J. Phys. D: Appl. Phys., vol. 13, pp. 839-846, 1980. [3]莊家琛, “太陽能工程-太陽電池篇”, 全華出版社, 台灣, 1997. [4]B. Burnett, “The Basic Physics and Design of Ⅲ-Ⅴ Multijunction Solar Cells”, the NREL’s Ⅲ-Ⅴ research, 2002. [5]D. C. Law, R. R. Kinga, H. Yoona, M. J. Archerb, A. Bocaa, C. M. Fetzera, S. Mesropiana, T. Isshikia, M. Haddada, K. M. Edmondsona, D. Bhusaria, J. Yena, R. A. Sherifa, H. A. Atwaterb, and N. H. Karama, “Future technology pathways of terrestrial III–V multijunction solar cells for concentrator photovoltaic systems”, Solar Energy Materials and Solar Cells, vol. 94, pp. 1314-1318, 2010. [6]C. M. Fetzer, R. R. Kinga, P. C. Coltera, K. M. Edmondsona, D. C. Lawa, A. P. Stavridesa, H. Yoona, J. H. Ermera, M. J. Romerob, and N. H. Karama, “High-efficiency metamorphic GaInP/GaInAs/Ge solar cells grown by MOVPE”, J. Cryst. Growth, vol. 261, pp. 341-348, 2004. [7]R. R. King, D. C. Law, K. M. Edmondson, C. M. Fetzer, G. S. Kinsey, H. Yoon, D. D. Krut, J. H. Ermer, R. A. Sherif, and N. H. Karam, “Advances in High-Efficiency Ⅲ-Ⅴ Multijunction Solar Cells”, Advances in OptoElectronics, vol. 2007, p. 29523, 2007. [8]R. R. King, D. C. Law, K. M. Edmondson, C. M. Fetzer, G. S. Kinsey, H. Yoon, R. A. Sherif, and N. H. Karam, “40% efficient metamorphic GaInP/GaInAs/Ge multijunction solar cells”, Appl. Phys. Lett., vol. 90, p. 183516, 2007. [9]J. F. Geisz, Sarah Kurtz, M. W. Wanlass, J. S. Ward, A. Duda, D. J. Friedman, J. M. Olson, W. E. McMahon, T. E. Moriarty, and J. T. Kiehl, “High-efficiency GaInP/GaAs/InGaAs triplejunction solar cells grown inverted with a metamorphic bottom junction”, Appl. Phys. Lett., vol. 91, p. 023502, 2007. [10]H. Yamaguchi, N. Takahashi, T. Kodama, R. Izichi, H. Washio, K. Nakamura, T. Takamoto, M. Imaizumi, M. Takahashi, K. Shimazaki, and K. Kibe, “Development status of Space Solar Sheet”, Photovoltaic Specialists Conference, 2008. PVSC ''08. 33rd IEEE, pp. 1-3, 2008. [11]T. Takamoto, T. Kodama, H. Yamaguchi, T. Agui, N. Takahashi, H. i Washio, T. Hisamatsu, M. Kaneiwa, and K. Okamoto, “Paper-Thin InGaP/GaAs Solar Cells”, Photovoltaic Energy Conversion, Conference Record of the 2006 IEEE 4th World Conference, vol. 2, pp. 1769-1772, 2006. [12]A. van Geelen, P. R. Hageman, G. J. Bauhuis, P. C. van Rijsingen, P. Schmidt, and L. J. Gilling., “Epitaxial lift-off GaAs solar cell from a reusable GaAs substrate”, Mater. Sci. Eng. B, vol. 45, pp. 162-171, 1997. [13]Y. Yazawa, K. Tamura, S. Watahiki, T. Kitatani, J. Minemura, and T. Warabisako, “GaInP single junction and GaInP/GaAs two junction thin-film solar cell structures by epitaxial lift-off”, Solar Energy Materials and Solar Cells, vol. 50, pp. 229-235, 1998. [14]Y. Yazawa, J. Minemura, K. Tamura, S. Watahiki, T. Kitatani, and T. Warabisako, “Process damage free thin-film GaAs solar cells by epitaxial liftoff with GaInP window layer”, Solar Energy Materials and Solar Cells, vol. 50, pp. 163-168, 1998. [15]T. Takamoto, M. Kaneiwa, M. Imaizumi, and M. Yamaguchi, “InGaP/GaAs-based multijunction solar cells”, Prog. Photovolt: Res. Appl., vol. 13, pp. 495-511, 2005. [16]http://www.spectrolab.com/DataSheets/TerCel/C1MJ_CDO-100.pdf [17]C. H. Henry, “Limiting efficiencies of ideal single and multiple energy gap terrestrial solar cells”, J. Appl. Phys., vol. 51, pp. 4494-4500, 1980. [18]M. A. Green, “Solar cells: Operating principles, technology, and system applications”, Univ. of New South Wales, Prentice Hall, Englewood Cliffs, NJ, 1982. [19]M. P Thekackra, “The Solar Cell Constant and Solar Spectrum Measurement from a Research Aircraft”, NASA Technical Report, 1970. [20]D. A. Neamen, “Semiconductor Physics and Devices”, the McGraw Hill Companies, New York, 2002. [21]S. M. Sze, “Semiconductor Devices Physics and Technology”, New York, Wiley, 2003. [22]蔡進譯, “超高效率陽電池”, 物理雙月刊, 第廿七卷五期, 第701頁, 2005. [23]A. Piotrowska, A. Guivarc''h, and G. Pelous, “Ohmic Contacts to III-V Compound Semiconductors: A Review of Fabrication Techniques”, Solid State Electronics, vol. 26, pp. 179-197, 1983. [24]李正中, “薄膜光學與鍍膜技術”, 藝軒圖書出版社, 台灣, 2002. [25]M. A. Green, “Limits on the open-circuit voltage and efficiency of silicon solar cells imposed by intrinsic Auger process”, IEEE Trans Electron Devices, vol. 31, pp. 671-678, 1984. [26]紀國鐘, 蘇炎坤, “光電半導體技術手冊”, 台灣電子材料與元件協會出版, 台灣, 2002. [27]M. J. Ludowise, “Metalorganic chemical vapor deposition of III-V semiconductors”, J. Appl. Phys, vol. 58, pp. R31-R55, 1985. [28]O. Feron, M. Sugiyama, W. Asawamethapant, N. Futakuchi, Y. Feurprier, Y. Nakano, and Y. Shimogaki, “MOCVD of InGaAsP, InGaAs and InGaP over InP and GaAs substrates: distribution of composition and growth rate in a horizontal reactor”, Appl. Surf. Sci., vol. 159-160, pp. 318-327, 2000. [29]M. A. Green, K. Emery, D. L. King, Y. Hishikawa, and W. Warta, “Solar cell efficiency tables (version 29)”, Prog. Photovolt: Res. Appl., vol. 15, pp. 35-40, 2007. [30]G. F. Zheng, Z. Shi, R. Bergmann, X. Dai, S. Robinson, A. Wang, J. Kufianski, and M. A. Green, “Thin film silicon solar cells on glass by substrate thinning”, Solar Energy Materials and Solar Cells., vol. 32, pp. 129-135, 1994. [31]J. W. Lee, S. J. Pearton, C. R. Abernathy, W. S. Hobson, F. Ren, and C. S. Wu, “Investigation of Wet Etching Solutions for In0.5Ga0.5P”, Solid-Slate Electronics, vol. 38, pp. 1871-1874, 1995. [32]J. R. Lothian, J. M. Kuo, F. Ren, and S. J. Pearton, “Plasma and Wet Chemical Etching of In0.5Ga0.5P”, J. Electron. Mater, vol. 21, pp. 441-445, 1992. [33]William F. Smith, “Foundations of Materials Science and Engineering, 3e”, McGraw-Hill Education, New York, 2005. [34]陳立俊, 張立, 梁鉅銘, 林文台, 楊哲人, 鄭晃忠, “材料電子顯微鏡學”, 國家實驗研究院儀器科技研究中心, 台灣, 1990. [35]高至鈞, 汪建民, “材料分析”, 中國材料科學學會, 台灣, 1998. [36]J. Ding, X. Cheng, and T. Fu, “Analysis of series resistance and P–T characteristics of the solar cell”, vacuum, vol. 77, pp. 163-167, 2005. [37]J. Millman and A. Grabel, “Microelectronics, 2nd Edition”, McGraw- Hill International Editions, New York, 1987. [38]鍾迪生, “真空鍍膜”, 遼寧大學出版社, 遼寧, 2001. [39]雷永泉, 萬群, 石永康, “新能源材料”, 新文京開發出版社, 台灣, 2004. [40]A. Marti, J. L. Balenzategui, and R. F. Reyna, “Photon recycling and Shockley''s diode equation”, J. Appl. Phys., vol. 82, pp. 4067-4075, 1997. [41]E. Radziemska, “The effect of temperature on the power drop in crystalline silicon solar cells”, Renewable Energy, vol. 28, pp. 1-12, 2003. [42]E. Radziemska, and E. Klugmann, “Thermally affected parameters of the current–voltage characteristics of silicon photocell”, Energy Conversion and Management, vol. 43, pp. 1889-1900, 2002. [43]J. C. C. Fan, “Theoretical temperature dependence of solar cell parameters”, Solar Cells, vol. 17, pp. 309-315, 1986.
摘要: 本論文提出砷化鎵/反射鏡/銅基板之薄膜型太陽電池與傳統之砷化鎵基板型太陽電池的性能比較。薄膜型太陽電池的製作是將傳統之砷化鎵基板型太陽電池轉移具有金屬鏡面(AuGe/Au)的銅基板上。我們將討論在不同基極層(base layer)厚度下之基板型太陽電池與薄膜型太陽電池的元件特性比較。基極層的厚度將會影響太陽能電池的元件特性與效率,並增加光電流輸出。薄膜型太陽電池的銅基板厚度分別為50、100、150以及200 μm,因具有良好導熱的銅基板之薄膜型太陽電池,在太陽模擬光源AM 1.5G量測條件下,其開路電壓(Voc)與電流密度(Jsc)均能有明顯改善。薄膜型太陽電池改善電流與電壓,是因為以下兩個原因:良好的散熱銅基板可以降低逆向飽和電流以及金屬鏡面可以將未被吸收的入射光反射,進而增加光電流的輸出。為了驗證因反射鏡的作用,由外部量子效率(EQE)量測得知,可以發現在1.5 μm基極層厚度下,薄膜型太陽電池在波長700~900 nm的波段,比起基板型太陽電池具有較佳的外部量子效率響應。且基板型太陽電池在不同環境溫度下,其元件特性受到半導體材料特性的影響,其開路電壓與填充因子(FF)均受到溫度升高而降低。但轉移到銅基板的薄膜型太陽電池在不同環境溫度下,有效改善薄膜型太陽電池的開路電壓及填充因子衰減速度。綜合開路電壓、電流密度以及填充因子在不同環境溫度下的變化,因此當基板型太陽電池轉移到銅基板後,太陽電池效率的衰減由-0.0235 %/°C減緩至-0.01077 %/°C(銅厚度為200 μm的薄膜型太陽電池)。
This thesis presents performance comparison between a GaAs/mirror/copper thin-film solar cell and a conventional GaAs solar cell with a thick GaAs substrate. The GaAs thin-film solar cell is fabricated by transferring a GaAs solar cell onto a AuGe/Au mirror-coated copper substrate. The device performance of GaAs solar cell with different base layer thickness for thin-film and conventional solar cell will be discussed and compared. The base layer thickness leads the performance of solar cell and results in increased photocurrent. The copper substrate thickness of thin films solar cell are 50, 100, 150 and 200 μm, respectively. With the aid of the excellent copper conductor, the thin-film solar cell exhibits significant improvement in both open-circuit voltage (Voc) and short-circuit current (Jsc) density in one-sun AM 1.5G light source. The improved current-voltage (I-V) performance of the thin-film solar cell originates from the following two factors: reduced reverse saturation current by good heat dissipation of copper and enhanced light absorption by the highly reflective AuGe/Au mirror. The role of the mirror can further be verified in the measurement of external quantum efficiency (EQE) response where the thin-film solar cell exhibits a larger EQE response in the wavelength range of 700~900 nm than the conventional GaAs solar cell with the same active absorbing thickness. The device properties of conventional solar cell versus different working temperature show the degradation of cell performance for open circuit voltage and fill factor (FF) due to the degradation of bulk semiconductor material. The GaAs thin films solar cell significantly is improved temperature coefficient of FF by transferring onto a copper substrate. A combined analysis on dVoc/dT, dJsc/dT and dFF/dT, the degradation of the conversion efficiency for conventional GaAs solar cell is improved by the thin-film solar cell with thick copper sub (thickness is 200 μm). The dη/dT value of conventional GaAs solar cell can be alleviated from -0.0235 %/°C to -0.01077 %/°C.
URI: http://hdl.handle.net/11455/4245
其他識別: U0005-0208201013225600
文章連結: http://www.airitilibrary.com/Publication/alDetailedMesh1?DocID=U0005-0208201013225600
Appears in Collections:精密工程研究所

文件中的檔案:

取得全文請前往華藝線上圖書館

Show full item record
 
TAIR Related Article
 
Citations:


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.