Please use this identifier to cite or link to this item:
標題: 以氧化鎵中間層成長氮化鎵磊晶膜之研究
Heteroepitaxial Growth of GaN Using a Ga2O3 Interlayer
作者: 胡子杰
Hu, Tzu-Chieh
關鍵字: gallium oxide
sacrificial material
SiO2 stripes
出版社: 精密工程學系所
引用: [1] N. Holonyak and S. F. Bevaqua, “Coherent (visible) light emission from Ga(As1–xPx) junctions”Appl. Phys. Lett., vol.1, p.82, 1962. [2] T. Matsuoka, H. Okamoto, M. Nakao, H. Harima, and E. Kurimoto, “Optical bandgap energy of wurtzite InN” Appl. Phys. Lett. vol.81, p.1246, 2002. [3] G.E. Stillman, V.M. Robbins, and N. Tabatabaie, “Ⅲ-V compound. semiconductor devices: Optical detectors” IEEE Trans. Electron Devices, vol.31, p.1643, 1984. [4] S. Nakamura, “In situ monitoring of GaN growth using interference effects” Jpn. J. Appl. Phys., vol.30, p.1620, 1991. [5] 史光國“半導體發光二極體及固態照明”全華科技圖書股份有限公司, 台灣. [6] J. J. Wierer, D. A. Steigerwald, M. R. Krames, J. J. O’Shea, M. J. Ludowise, G. Christenson, Y.-C. Shen, C. Lowery, P. S. Martin, S. Subramanya, W. Gotz, N. F. Gardner, R. S. Kern, and S. A. Stockman, “High-power AlGaInN flip-chip light-emitting diodes” Appl. Phys. Lett., vol 78, p.3379, 2001. [7] C. H. Chen, Y. K. Su, S. J. Chang, G. C. Chi, J. K. Sheu, J. F. Chen, C. H. Liu, and Y. H. Liaw “High brightness green light emitting diodes with charge asymmetric resonance tunneling structure” IEEE Electron Device Lett., vol. 23, p.130, 2002. [8] C. H. Chen, S. J. Chang, Y. K. Su, G. C. Chi, J. K. Sheu, and J. F. Chen, “High-efficiency InGaN-GaN MQW green light-emitting diodes with CARTand DBR structures” IEEE J. Sel. Top. Quantum Electron., vol. 8, p.284, 2002. [9] C. C, Liu, Y. H. Chen, M. P. Houng, Y. H. Wang, Y. K. Su, and W. B. Chen, “Improved light-output power of GaN-LEDs by selective region activation” IEEE Photonics Technol. Lett., vol. 16, p.1444, 2004. [10] T. Fujii, Y. Gao, R. Sharma, E. L. Hu, S. P. Denbaars, and S. Nakamura, “Increase in the extraction efficiency of GaN-based light-emitting diodes via surface roughening” Appl. Phys. Lett., vol 84, p.855, 2004. [11] C. Huh, K. S. Lee, E. J. Kang, and S. J. Park, “Improved light-output and electrical performance of InGaN-based light-emitting diode by microroughtening of the p-GaN surface” J. Appl. Phys., vol 93, p.9383, 2003. [12] Y. K. Su, S. J. Chang, C.H. Chen, J. F. Chen, G. C. Chi, J. K. Sheu, W. C. Lai, and J. M. Tsai, “GaN metal-semiconductor-metal ultraviolet sensors with various contact electrodes” IEEE Sens. J. vol 2, p.366, 2002. [13] H. Kim, K. K. Kim, K. K. Choi, H. Kim, J. O. Song, J. Cho, K. H. Baik, C. Sone, and Y. Park, “Design of high-efficiency GaN-based light emitting diodes with vertical injection geometry”, Appl. Phys. Lett. vol. 91, p.023510, 2007. [14] C.F. Chu, C. C. Yu, H. C. Cheng, C. F. Lin, and S. C. Wang, “Comparison of p-side down and p-side up GaN light-emitting diodes fabricated by laser lift-off” Jpn. J. Appl. Phys. vol. 42, p. 147, 2003. [15] W. Y. Lin, D. S. Wuu, K. F. Pan, S. H. Huang, C. E. Lee, W. K. Wang, S. C. Hsu, Y. Y. Su, S. Y. Huang, and R. H. Horng, “High-power GaN–mirror–Cu light-emitting diodes for vertical current injection using laser lift-off and electroplating techniques”, IEEE Photonics Technol. Lett., vol. 17, p.1809, 2005. [16] H. Y. Kuo, S. J. Wang, P. R. Wang, K. M. Uang, T. M. Chen, and H. Kuan, “A Sn-based metal substrate technology for the fabrication of vertical-structured GaN-based light-emitting diodes”, Appl. Phys. Lett., vol. 92, p.021105, 2008. [17] J. S. Ha, S. W. Lee, H. J. Lee, H. J. Lee, S. H. Lee, H. Goto, T. Kato, K. Fujii, M. W. Cho, and T. Yao, “The fabrication of vertical light-emitting diodes using chemical lift-off process”, IEEE Photonics Technol. Lett., vol. 20, p.175, 2008. [18] Y. S. Wu and P. Lin, “Method for transferring epitaxy layer”, US Pat. US 6,686,257 B2 (2002). [19] M. Koike and S. Yamazaki, “Method for producing group III nitride compound semiconductor”, US Pat. US 7,112,243 B2, 2001. [20] E. L. Hu and A. R. Stonas, “Photoelectrochemical undercut etching of semiconductor material”, US Pat. US 6,884,740, 2001. [21] M. Senda, N. Shibata, J. Ito, and T. Chiyo, “III group nitride based semiconductor element and method for manufacture thereof”, US Pat. US 6,875,629, 2001. [22] C. Y. Hwang, “Growth and characterization of gallium nitrideon (0001)sapphire by plasma enhanced atomic layer epitaxy and by low pressure metaloganic chemical vapor deposition,” Ph. D. Mechenics and Materials Science, Rutgers University, Piscataway, NJ , 1995. [23] 陸大成, 段樹坤, “金屬有機化合物氣相外延基礎及應用” 科學出版社, 北京, 2009. [24] K. N. Tu, J. W. Mayer, and L. C. Feldman, “Electronic thin film science: for electrical engineers and materials scientists”, Pearson Education POD, 1996. [25] J. Singh, “Physics of Semiconductors and their Heterostructures” McGraw-Hill, New York, 1993. [26] S. Nakamura and G. Fasol, “The blue laser diode”, Springer Berlin, 1997. [27] Y. Kato, S. Kitamura, K. Hiramatsu, and N. Sawaki, “Selective growth of wurtzite GaN and AlxGa1-xN on GaN/sapphire substrates by metalorganic vapor phase epitaxy”, J. Cryst. Growth, vol. 144, p.133, 1994. [28] K. Hiramatsu, K. Nishiyama, A. Motogaito, H. Miyake,Y. Iyechika, and T. Maeda, “Recent progress in selective area growthand epitaxial lateral overgrowth of III-nitrides:effects of reactor pressure in MOVPE growth”, phys. stat. sol., vol. 176, p.535, 1999. [29] K. Hiramatsu, K. Nishiyama, M. Onishi, H. Mizutani, M. Narukawa, A. Motogaito, H. Miyake, Y. Iyechika, and T. Maeda, “Fabrication and characterization of low defect density GaN using facet-controlled epitaxial lateral overgrowth (FACELO)”, J. Cryst. Growth, vol. 221, p.316, 2000. [30] 施敏, “半導體元件物理與製作技術” 國立交通大學出版社, 台灣, 2002. [31] Y. Xi and E. F. Schubert, “Junction–temperature measurement in GaN ultraviolet light-emitting diodes using diode forward voltage method” Appl. Phys. Lett. vol. 85, p.2163, 2004. [32] Y. Xi, J. Q. Xi, T. Gessmann, J. M. Shah, J. K. Kim, E. F. Schubert, A. J. Fischer, M. H. Crawford, K. H. A. Bogart, and A. A. Allerman, “Junction and carrier temperature measurements in deep-ultraviolet light-emitting diodes using three different methods” Appl. Phys. Lett. vol. 86, p.031907, 2005. [33] Lumileds Application Brief, “Thermal management considerations for superflux LEDs,”Lumileds Application Brief AB20-4, 2002. [34] P. R. Tavemier and D. R. Clarke, “Mechanics of laser-assisted debonding of films”J. Appl. Phys. vol. 89, p.1527, 2001. [35] C. F. Lin, J. J. Dai, M. S. Lin, K. T. Chen, W. C. Huang, C. M. Lin, R. H. Jiang, and Y. C. Huang, “An AlN sacrificial buffer layer inserted into the GaN/patterned sapphire substrate for a chemical lift-off process” Appl. Phys. Exp., vol. 3, p.031001, 2010. [36] A. Ougazzaden, D.J. Rogers, F. Hosseini Teherani, T. Moudakir, S. Gautier, T. Aggerstam, S. Ould Saad, J. Martin, Z. Djebbour, O. Durand, G. Garry, A. Lusson, D. McGrouther, and J.N. Chapman, “Growth of GaN by metal organic vapor phase epitaxy on ZnO-buffered c-sapphire substrates” J. Cryst. Growth, vol. 310, p.944, 2008. [37] D. J. Rogersa, F. Hosseini Teherani, A. Ougazzaden, S. Gautier, L. Divay, A. Lusson, O. Durand, F. Wyczisk ,G. Garry, T. Monteiro, M. R. Correira, M. Peres, A. Neves, D. McGrouther, J. N. Chapman, and M. Razeghi, “Use of ZnO thin films as sacrificial templates for metal organic vapor phase epitaxy and chemical lift-off of GaN” Appl. Phys. Lett., vol. 91, p.071120, 2007. [38] K. Shimamura, E. G. Villora, K. Domen, K. Yui, K. Aoki, and N. Ichinose, “Epitaxial growth of GaN on (1 0 0) β-Ga2O3 substrates by metalorganic vapor phase epitaxy” Jpn. J. Appl. Phys., vol. 44, p.7, 2005. [39] K. Fujii, S. Lee, J. S. Ha, H. J. Lee, H. J. Lee, S. H. Lee, T. Kato, M. W. Cho, and T. Yao, “Leakage current improvement of nitride-based light emitting diodes using CrN buffer layer and its vertical type application by chemical lift-off process” Appl. Phys. Lett., vol. 94, p.242108, 2009. [40] J. S. Ha, S. W. Lee, H. J. Lee, H. J. Lee, S. H. Lee, H. Goto, T. Kato, K.Fujii, M. W. Cho, and T. Yao, “The fabrication of vertical light-emitting diodes using chemical lift-off process” IEEE Photonics Technol. Lett., vol. 20, p.175, 2008. [41] H. Goto, S. W. Lee, H. J. Lee, H. J. Lee, J. S. Ha, M. W. Cho, and T. Yao, “Chemical lift-off of GaN epitaxial films grown on c-sapphire substrates with CrN buffer layers” Phys. Stat. Sol., vol. 5, p.1659, 2008. [42] H. J. Lee, J. S. Ha, H. J. Lee, S. W. Lee, S. H. Lee, H. Goto, S. K. Hong, M. W. Cho, T. Yao, K. Fujito, K. Shimoyama, H. Namita, and S. Nagao, “Hydride vapor phase epitaxy of GaN on the vicinal c-sapphire with a CrN interlayer” J. Cryst. Growth, vol. 311, p.470, 2009. [43] S. W. Lee, J. S. Ha, H.J. Lee, H. J. Lee, H. Goto, T. Hanada, T. Goto, K. Fujii, M. W. Cho, and T. Yao, “Lattice strain in bulk GaN epilayers grown on CrN/sapphire template” Appl. Phys. Lett., vol. 94, p.082105, 2009. [44] F. Kreith, M. S. Bohn, “Principles of heat transfer” Harper and Row Publishers Inc., New York, 1986. [45] Y. J. Park, C. S. Oh, T. H. Yeom, and Y. M. Yu, “Ammonolysis of Ga2O3 and its application to the sublimation source for the growth of GaN film” J. Cryst. Growth, vol. 264, p.1, 2004. [46] H. X. Wang, Y. Amijima, Y. Ishihama, and S. Sakai, “Influence of carrier gas on the morphology and structure of GaN layers grown on sapphire substrate by six-wafer metal organic chemical vapor deposition system” J. Cryst. Growth, vol. 233, p.681, 2001. [47] O. Schon, B. Schineller, M. Heuken, and R. Beccard, “Comparison of hydrogen and nitrogen as carrier gas for MOVPE growth of GaN” J. Cryst. Growth, vol. 189, p.335, 1998. [48] L. T. Romano, B. S. Krusor, and R. J. Molnar, “Structure of GaN films grown by hydride vapor phase epitaxy” Appl. Phys. Lett., vol. 71, p.2283, 1997. [49] A. Strittmatter, A. Krost, V. Turck, M. StraXburg, D. Bimberg, J. Blasing, T. Hempel, J. Christen, B. Neubauer, D. Gerthsen, T. Christmann, and B. K. Meyer, “LP-MOCVD growth of GaN on silicon substrates-comparisonbetween AlAs and ZnO nucleation layers” Mater. Sci. Eng., vol. 59, p.29, 1999. [50] Y. S. Cho, H. Hardtdegen, N. Kaluza, N. Thillosen, R. Steins, Z. Sofer, and H. Lüth, “Effect of carrier gas on GaN epilayer characteristics” Phys. Stat. Sol., vol. 3, p.1408, 2006. [51] T. Bottcher, S. Einfeldt, S. Figge, R. Chierchia, H. Heinke, D. Hommel, and J. S. Speck “The role of high-temperature island coalescence in the development of stresses in GaN films” Appl. Phys. Lett., vol. 78, p.1976, 2001.
摘要: 本論文提出一新穎性製程,在藍寶石基板與氮化鎵磊晶膜間插入一氧化鎵中間層,並探討磊晶過程中載流氣體對於氧化鎵中間層的影響。磊晶條件的特色為利用氮氣為載流氣體,克服了高溫下氫氣和氨氣對於氧化鎵中間層的影響,並利用於氫氣環境下二次成長的方式解決氮氣磊晶成長品質不佳的缺點。 為了降低分離基板的時間,我們將氧化鎵中間層表面成長二氧化矽(SiO2)蝕刻走道以增加蝕刻溶液與氧化鎵的接觸面積。從高解析雙晶繞射儀、光激發光光譜圖、掃描式電子顯微鏡與原子力顯微鏡分析結果顯示。直接以氫氣成長氮化鎵磊晶層於氧化鎵中間層,會因為氧化鎵被氫氣破壞完全沒辦法成長單晶結構。另外直接以氮氣成長氮化鎵磊晶層於氧化鎵中間層時,其磊晶品質不佳以其高解析雙晶繞射對稱面(002)半高寬都達到1400 arcsec以上。因此我們再於氫氣環境做二次氮化鎵磊晶成長以改善磊晶品質,高解析雙晶繞射對稱面(002)半高寬可以降低40%以上。以光激發光光譜圖、掃描式電子顯微鏡與原子力顯微鏡分析結果顯示磊晶膜品質在氫氣成長後可以明顯改善於氮氣成長所產生的孔洞。最後我們利用氫氟酸蝕刻氧化鎵中間層成功的分離氮化鎵磊晶膜和藍寶石基板。故可驗證化學蝕刻剝離技術應用於薄膜氮化鎵發光二極體製程之可行性。
This thesis has presented a new sacrificial material, gallium oxide (Ga2O3) for the chemical lift off (CLO) process of GaN epilayers from sapphire substrates. The atmosphere of metal organic vapor chemical deposition (MOCVD) used for growing crystalline GaN on Ga2O3 sacrificial layer was N2 since a serious degradation of Ga2O3 would take place in a H2 ambient at high temperature. To improve the quality of GaN grown with N2 as carrier gas, the GaN was subsequently regrown in a H2 ambient. In order to increase the lateral etching rate for CLO process conducted with Ga2O3, the SiO2 stripes with a 3-μm-wide, a 400-nm-height, and 3-μm-spacing were deposited on Ga2O3/sapphire in the direction of <11 ¯00>GaN by a combination of plasma enhanced chemical vapor deposition, photolithograph and inductively coupled plasma dry etching processes. The growth of GaN epilayer on the Ga2O3 layer with SiO2 stripes was achieved by the two-step selective MOCVD where the first-step was carried out in a N2 ambient and the second-step was conducted in a H2 ambient. The full width at half maximum of rocking curve at (002) plane for the GaN grown by this 2-step selective MOCVD was 40% lower than that for the GaN grown by a conventional MOCVD in a N2 ambient. Meanwhile, the lateral etching rate of Ga2O3 was dramatically improved since these SiO2 stripes provided hydrofluoric acid pathways for getting into the central part of Ga2O3.
其他識別: U0005-0802201115353400
Appears in Collections:精密工程研究所



Show full item record
TAIR Related Article

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.