Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/4250
標題: 高功率發光二極體之散熱光杯取光設計與陣列模組構裝技術製作
Study on High Power LEDs Thermal Dispersed Copper Cup Design of Light Extraction and High Power LEDs Array Modules Application
作者: 江鎰禎
Chiang, Yi-Chen
關鍵字: thermal resistance
熱阻
cup-shaped copper sheet
beveled substrate
array LEDs module
銅光杯
斜角基板
陣列發光二極體模組
出版社: 精密工程學系所
引用: [1]M. R. Krames, G. Christenson, D. Coffins., L. W. Cook, M. G. Craford, A. Edwards, R. M. Fletcher, N. Gardner, W. Goetz, W. Imler, E. Johnson, R. S. Kern, R. Khare, F. A. Kish, C. Lowery, M. J. Ludowise, R. Mann, M. Maranowski, S. Maranowski, P. S. Martin, J. O''Shea, S. Rudaz, D. Steigerwald, J. Thompson, J. J. Wierer and J. Yu, “High-Brightness A1GaInN Light-Emitting Diodes,” SPIE, vol. 2, p. 3938, 2000. [2]F. Wall, P. Martin and G. Harbers, “High Power LED Package Requirement,” SPIE, vol. 85, p. 5187, 2004. [3]J. Y. Tsao, Ed., “Light Emitting Diodes (LEDs) for General Illumination,” Optoelectronics Industry Development Association, 2002. [4]H. Sugawara, M. Ishikawa and G. Hatakoshi, “High Efficiency InGaAlP/GaAs Visible Light Emitting Diodes,” App. Phys. Lett., vol. 58, p. 1010, 1991. [5]H. Sugawara, M. Ishikawa and G. Hatakoshi, “High Brightness InGaAlP Green Light Emitting Diodes,” App. Phys. Lett., vol. 61, p. 1752, 1992. [6]D. A. Vanderwater, I. H. Tan, G. E. Hofler, D. C. DeFevere and F. A. Kish, “High Brightness AlGaInP Light Emitting Diodes,” IEEE., vol. 85, p. 1752, 1997. [7]S. Nakamura, M. Senoh, N. Iwasa, S. Nagahama, T. Yamada and T. Mukai, “Superbright Green InGaN Single Quantum Well Structure Light Emitting Diodes,” Jpn. J. Appl. Phys., vol. 34, p. 1332, 1995. [8]F. A. Kish, F. M. Steranka, D. C. DeFevere, D. A. Vanderwater, K. G. Park, C. P. Kuo, T. D. Osentowski, M. J. Peanasky, J. G. Yu, R. M. Fletcher, D. A. Steigerwald and M. G. Craford, “Very High Efficiency Semiconductor Wafer Bonded Transparent Substrate (AlxGa1–x)0.5In0.5P/GaP Light Emitting Diodes, ” Appl. Phys. Lett., vol. 64, p. 2839, 1994. [9]F. A. Kish, D. A. Vanderwater, D. C. DeFevere, D. A. Steigerwald, G. E. Hofler, K. G. Park and F. M. Steranka, “High Reliable and Efficient Semiconductor Wafer Bonded AlGaInP/GaP Light Emitting Diodes,” Electron. Lett., vol. 32, p. 132, 1996. [10]S. Yoshida, S. Misawa, and S.Gonda, “Epitaxial Growth of GaN/AlN Heterostructures,” Journal of Vacuum Science & Technology B., vol. 1, 250, 1982. [11]M. Hao, T. Sugahara, H. Sato, Y. Morishima, Y. Naoi, L. T. Romano and S. Sakai, “Study of Threading Dislocations in Wurtzite GaN Films Grown on Sapphire by Metalorganic Chemical Vapor Deposition,” Jpn. J. Appl. Phys., vol. 37, p. 291, 1998. [12]E. Kuokstis, C. Q. Chen, J. W. Yang, M. Shatalov, M.E. Gaevski, V. Adivarahan and M. A. Khan, “Room Temperature Optically Pumped Laser Emission from a-plane GaN with High Optical Gain Characteristics,” Appl. Phys. Lett., vol. 84, p. 2998, 2004. [13]A. Zukauskas, M. S. Shur and R. Gaska, “Introduction to Solid-State Lighting,” Wiley and Sons Press, p. 12 , 2002. [14]S. Nakamura and G. Fasol, “The Blue Laser Diode: GaN Based Light Emitters and Lasers,” Springer Press, p. 10, 2000. [15]S. Nakamura and S. F. Chichibu, “Introduction to Nitride Semiconductor Blue Laser Diode and Light Emitter Diodes,” Taylor and Francis Press, p. 45, 2000. [16]N. Narendran and Y. Gu, “Life of LED-Based White Light Sources,” IEEE, vol. 1, p. 1,2005. [17]R. H. Horng, C. C. Chiang, H. Y. Hsiao, X. Zheng,2 D. S. Wuu and H. I. Lin,“Improved Thermal Management of GaN/Sapphire Light-Emitting Diodes Embedded in Reflective Heat Spreaders,” Appl. Phys. Let., vol. 93, p. 111907, 2008. [18]R.H. Horng, H.Y. Hsiao, C.C. Chiang, D.S. Wuu, Y.L. Tsai and H.I. Lin, “Novel Device Design for High-PowerInGaN/Sapphire LEDs Using Copper Heat Spreader With Reflector”. IEEE, vol. 15, p. 4, 2009. [19]史光國, “半導體LED及固態照明”,全華科技, p.2.1, 2005. [20]E.Hecht,“Optics”4th,p. 117, 2002. [21]黃調元,“半導體元件物理與製作技術”,國立交通大學出版社,p.41, 2003. [22]Y. Xi and E. F. Schubert, “Junction Temperature Measurement in GaN Ultraviolet Light Emitting Diodes Using Diode forward Voltage Method” , Appl. Phys. Lett., vol. 85, p. 2163, 2004. [23]Y. Xi, J. Q. Xi, T. Gessmann, J. M. Shah, J. K. Kim, E. F. Schubert, A. J. Fischer, M. H. Crawford, K. H. A. Bogart and A. A. Allerman, “Junction and Carrier Temperature Measurements in Deep Ultraviolet Light Emitting Diodes Using Three Different Methods” , Appl. Phys. Lett., vol. 86, p. 1907, 2005. [24]P. Incropera and P. DeWitt, “Introduction To Heat Transfer 4th,” Wiley & Sons Press, p. 13, 2001. [25]J. Moran and N. Shapiro, “Fundamentals of Engineering Thermodynamics 6th,” John Wiley & Sons Press, p. 110, 2004. [26]P. Incropera, P. DeWitt, L. Bergman and S. Lavine, “Fundamentals of Heat and Mass Transfer 4th,” John Wiley & Sons Press, p. 69, 1997. [27]Frank Kreith and M. S. Bohn, “Principles of Heat Transfer 6th,” Brooks/Cole, p.6, 2001. [28]J. T. Hsu, W. Y. Yeh, C. C. Chuo, J. D. Tsay, C. S. Huang and C. Y. Lin, “Beveled Sidewall Formation and Its Effect on the Light Output of a GaInN Multiquantum Well Light-Emitting Diode with Sapphire Substrate,” Optical Engineering, vol. 44, p. 111304, 2005. [29]C. E. Lee, H. C. Kuo, Y. C. Lee, M. R. Tsai, T. C. Lu, S. C. Wang and C. T. Kuo, “Luminance Enhancement of Flip-Chip Light-Emitting Diodes by Geometric Sapphire Shaping Structure,” IEEE Photonics Technology Lett., vol. 20, p. 3, 2008. [30]Y. Zhu , C. Xu, X. Da, T. Liang, J. Zhang and G. Shen, “Enhanced Output of Flip-Chip Light-Emitting Diodes with a Sidewall Reflector,” Solid-State Electronics, vol. 51, p. 674, 2007. [31]S.H. Huang, R.H. Horng, S.L. Li, K.W. Yen, D.S. Wuu, C.K. Lin and H. Liu, “Thermally Stable Mirror Structures for Vertical-Conducting GaN/Mirror/Si Light-Emitting Diodes,” IEEE Photonics Technology Lett., vol. 19, p. 23, 2007. [32]蕭翔允,“高散熱發光二極極體構裝設計與實做研究,”國立中興大學材料工程學系碩士論文,2008. [33]G. Iyer, E. Ouyang, W. Kittidacha, S. Tantideeravit and Suresh LK Spansion Inc. “Pb-free Solder: SAC105 vs SAC305 Drop-Test Reliability Data Comparison” IEEE/CPMT International Electronics Manufacturing Technology (IEMT), vol. 32, p 251, 2007. [34]洪志欣,“高功率LED之前瞻性熱管理設計與構裝技術製 作,”國立中興大學材料工程學系碩士論文,2010. [35]G. Farkas, Q. V. V. Vader, A. Poppe and G. Bognár, “Thermal Investigation of High Power Optical Devices by Transient Testing,” IEEE, vol. 28, p. 1, 2005. [36]C. P. Wang and S. B. Huang, “Technology of Interface Thermal Resistance Measurement for LED Package,” Industrial Materials Magazine, p. 266, 2009. [37]G. B. Stringfellow, “High brightness light emitting diode,” Academic Press Inc. Boston, pp.149-219, 1997. [38]史光國, “半導體LED及固態照明”,全華科技, p.1.10, 2005.
摘要: 本論文主要經由結構設計及材料找出藍光氮化鎵發光二極體(LED)解熱途徑,並降低其整體熱阻。另一部份,也經由實驗及模擬設計不同幾何形狀及斜邊結構的藍寶石基板,找出氮化鎵LED晶粒最佳取光效率的結構,並與銅散熱光杯結合,解決LED之散熱及取光。本研究從整體封裝結構探討熱分佈,成功解決散熱部分的問題。研究發現具斜角藍寶石基板結合銅光杯晶粒,在注入電流為350 mA時,光功率可達395.6 mW,光電轉換效率高達33.2%,而表面溫度已降至40°C左右,可見得其在散熱方面表現也相當的出色。比較原始封裝結構,在光功率部分,提升了21.5%,光電轉換效率也大幅提升增加5.6%;在散熱部分,利用類鑽基板及複合焊料封裝,封裝後整體熱阻的表現,已降低至原始封裝結構的三分之一熱阻,達到低於5 K/W。 利用模擬將散熱銅光杯應用於陣列多顆一般型晶粒的製程,並與一般無光杯結構的陣列LEDs模組比較,銅光杯結構可將LEDs所產生的熱直接由晶粒端傳導至銅,並傳遞至鋁散熱基板,此結構除了快速散熱並可提升出光。經由表面溫度量測結果,2×2陣列LEDs模組在注入電流為700 mA時,具散熱銅光杯結構晶粒表面最高溫度約為46.77°C,而一般無光杯結構晶粒表面最高溫度約為55.36°C。3×3陣列LEDs模組在注入電流為600 mA時,具散熱銅光杯結構晶粒表面溫度約為42.34°C~43.67°C,而一般無光杯結構晶粒表面溫度約為46.13°C~50.58°C。比較在未有樹脂封裝,經積分球量測結果,2×2陣列LEDs模組,在注入電流為700 mA,具散熱銅光杯結構光功率為1351.6 mW;而一般無光杯結構光功率為1202.9 mW。3×3陣列LEDs模組,在注入電流為600 mA,具散熱銅光杯結構光功率為2792.7 mW;而一般無光杯結構光功率為2643.8 mW。經研究結果,具光杯結構應用於陣列模組製作,不論光及熱皆有明顯改善。
In this study, the effects of chip types and package materials of GaN light emitting diodes (LEDs) have been investigated on thermal resistance and heat dispersed. In this research, experiments and optical simulations are carried out to study the effect of beveled geometric shapes on the light extraction efficiency of a GaN LED with sapphire substrate. The beveled rectangular chip is using metal electroplating to design the high thermal dispersed structure through copper. The results from our experiments show that the output power of a beveled rectangular chip with copper is higher 21.5%, and enhanced more 5.6% wall plug efficiency as compared with those of conventional rectangular chips. The thermal resistance of optimization chip with copper on diamond like carbon (DLC) heat sink using compound solder is below 5 K/W. Here, cup-shaped copper sheet is developed to improve heat dispersed of high-power LEDs array module using electroplating technique. The cup-shaped copper sheet was directly contacted with sapphire to enhance heat dispersion of the chip itself. The light extraction of the lateral emitting and heat dispersion of high-power LEDs are enhanced and efficient, respectively. The experimental results show the surface temperature of 22 array LEDs module with 700 mA injection current. The highest temperature is 46.77C and 55.36C of copper heat spreader and original structure, respectively. Moreover, 33 array LEDs modules with 600 mA injection current, the highest temperature is 43.67C and 50.58C of copper heat spreader and original structure, respectively. The output power of 22 array LEDs module injected 700 mA with and without copper heat spreader is 1351.6 mW and 1202.9 mW, respectively. Moreover, the 33 array LEDs module with copper heat spreader and original structure injected 600 mA show 2792.7 mW and 2643.8 mW, respectively. The optical and thermal characteristics of array LEDs module have been obviously improved using the cup-shaped copper substrate.
URI: http://hdl.handle.net/11455/4250
其他識別: U0005-1102201120274000
文章連結: http://www.airitilibrary.com/Publication/alDetailedMesh1?DocID=U0005-1102201120274000
Appears in Collections:精密工程研究所

文件中的檔案:

取得全文請前往華藝線上圖書館



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.