Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/4255
DC FieldValueLanguage
dc.contributor韓斌zh_TW
dc.contributorPin Hanen_US
dc.contributor許鎮鵬zh_TW
dc.contributorChen-Peng Hsuen_US
dc.contributor.advisor洪瑞華zh_TW
dc.contributor.advisorRay-Hua Horngen_US
dc.contributor.author王士瑜zh_TW
dc.contributor.authorWang, Shih-Yuen_US
dc.contributor.other中興大學zh_TW
dc.date2011zh_TW
dc.date.accessioned2014-06-06T06:27:22Z-
dc.date.available2014-06-06T06:27:22Z-
dc.identifierU0005-1608201015055400zh_TW
dc.identifier.citation[1] 廖啟男,”三原色發光二極體操做特性研究”,國立中山大學電機工程學系碩士論文 (2007) [2] 郭瑞雄,”可見光刺激人類皮膚纖維母細胞生長之影響”,中原大學化學工程學系碩士論文 (2003) [3] R.T.Loving, D.F.Kripke, N.C.Knickerbocker and M.A.Grandner, “Bright green light treatment of depression for older adults”,BMC Psychiatry 2005, 5:42 doi:10.1186/1471-244X-5-42, (2005) [4] M.Takenaka, T.Horiuchi, and R.Yanagimachi,“Effects of light on development of mammalian zygotes”, PNAS, vol.104, no.36, 14289-14293, (2007) [5] H.Ries, I.Leike, and J.Muschaweck,“Optimized additive mixing of colored light-emitting diode sources”, Opt. Eng., Vol. 43, No.7, 1531-1536, (2004) [6] I.Moreno and U.Contreras,“Color distribution from multicolor LED arrays”, Opt.Exp., Vol.15, No.6, 3607-3618 (2007) [7] A.Zukauskas, R.Vaicekauskas, F.Ivanauskas, R.Gaska, and M.S.Shur, “Optimization of white polychromatic semiconductor lamps” Appl. Phys. Lett. Vol.80, No.2, 234 (2002) [8] S.Muthu, F.J.Schuurmans, and M.D.Pashley, Red, Green, and Blue LED based white light generation: Issues and control”, IEEE, 0-7803-7420-7, 327-333 (2002) [9] S.Muthu, F.J.Schuurmans, and M.D.Pashley,“Red, Green, and Blue LEDs for White Light Illumination”, IEEE Journal on selected topics in quantum electronics, VOL. 8, NO. 2, 333-338 (2002) [10] L.Kim and M.W.Shin, “Implementation of Side Effects in Thermal Characterization of RGB Full-Color LEDs”, IEEE Elec. Dev. Letts, VOL. 28, NO. 7, 578-580 (2007) [11] 潘錫明, “認識發光二極體”, 科學發展月刊, 435 期, 6-11, (2009) [12] 張祐銜, 劉正毓, “發光二極體的封裝技術”, 科學發展月刊, 435 期, 12-17, (2009) [13] John Moran Eye Center, University of Utah, “The layers that make up the retina.“, http://www.daviddarling.info/encyclopedia/R/retina.html, (2010) [14] 大田 登原著, 陳鴻興, 陳詩涵編譯,”色彩工程學理論與應用”全華圖書, (2008) [15] efg’s Computer Lab, “Chromaticity Diagrams Lab Report”, http://www.efg2.com/Lab/Graphics/Colors/Chromaticity.htm, (2009) [16] Wikipedia, “Gamut”, http://en.wikipedia.org/wiki/Gamut, (2010)zh_TW
dc.identifier.urihttp://hdl.handle.net/11455/4255-
dc.description.abstract本文主要研究紅/綠/藍發光二極體(Light Emitting Diode, LED)以常見的矽基板、藍寶石基板、以及銅合金基板封裝對於環境溫度與脈波寬度度調變(Plus Width Modulation, PWM)導通比(Duty Cycle)的特性,以及維持混光後亮度與色座標穩定的方式。 發光二極體光輸出強度會隨著環境溫度的升高而降低,經實驗證明環境溫度由-10 ℃至50 ℃,以矽為基板的紅光發光二極體輸出強度下降最大至40 %,峰值波長增加7 nm,相對色座標變化量Δuv高達0.021。同時,發光二極體的峰值波長與色座標也會受到導通比增加而改變,導通比由0.1升至1.0時,以矽為基板的紅光、藍寶石為基板的藍光以及銅合金基板的藍光發光二極體峰值波長最大有2 nm的增幅,矽基板的紅光相對色座標變化量Δuv高達0.005。 透過矽基板的紅、綠、藍發光二極體以及藍寶石基板、銅合金基板的綠與藍光發光二極體對溫度以及導通比的特性分析,計算出混光的方程式,此方程式能夠使得混光後的光源在溫度變化範圍-10 ℃至50 ℃,明暗調變(Dimming)範圍0.3至1.0之間,維持相對uv色座標變化量Δuv小於工業標準0.003,溫度變化範圍-10 ℃至50 ℃,三色刺激值Y代表亮度的相對變化量ΔY小於5個百分點。zh_TW
dc.description.abstractThe subjects of this study are the temperature and plus width modulation (PWM) duty cycle effect on the characteristics of packaged RGB LEDs with silicon, sapphire, and copper alloy substrates. The way to maintain the color coordinates after the color is mixed by RGB LEDs was also proposed. Several experiments show that output power of LEDs decreases with temperature increasing. During rising temperatures from -10 ℃ to 50 ℃, the output power of red LEDs with silicon substrate decreases around 40 %, peak wavelength increases around 7 nm, and relative uv coordinates shifts around 0.021. At the meantime, peak wavelength and color coordinates also shifts by duty cycle of PWM. The peak wavelength of silicon based red LEDs, sapphire based blue LEDs and copper alloy based LEDs increases 2 nm and relative color coordinates of silicon based red LEDs shifts 0.005 during increases of duty cycle from 0.1 to 1.0. From analyzing the temperature and PWM duty cycle characteristics of silicon based red, green, and blue LEDs and sapphire based, copper alloy based green and blue LEDs, we provide a formula for color mixing. It can maintain the shifts of relative color coordinates lower than industrial standard 0.003 and tristimulus value Y which defines as brightness lower than 5 % with dimming level from 0.3 to 1.0 and operating temperatures range from -10 ℃ to 50 ℃.en_US
dc.description.tableofcontents封面內頁 簽名頁 授權書 誌謝 I 摘要 II ABSTRACT III 目錄 IV 圖目錄 VI 表目錄 XIV 第一章、緒論 1 1.1 前言 1 1.2 發光二極體發展歷史與趨勢 1 1.3 研究動機 2 1.4 論文架構 3 第二章、 發光二極體原理及色彩工程簡介 4 2.1 發光二極體原理概述 4 2.2 發光二極體驅動方式簡介 5 2.1.1 DC 直流驅動: 5 2.1.2 脈波寬度調變(PWM)驅動: 5 2.3 色彩工程簡介 5 2.3.1 光與視覺 5 2.3.2 CIE表色系統 6 2.3.3 色度座標 7 2.3.4 加法混光法則 8 第三章、 實驗步驟與設備簡介 10 3.1 實驗目的 10 3.2 實驗步驟 10 3.3 實驗設備簡介 11 3.3.1 頻譜分析儀 11 3.3.2 積分球 11 3.3.3 高低溫循環測試機 11 3.3.4 DC直流電源供應器 12 3.3.5 發光二極體驅動模擬電路板 12 第四章、 實驗結果與分析 13 4.1 單顆發光二極體驅動導通比分析: 13 4.2 單顆發光二極體環境溫度影響分析: 19 4.3 單顆發光二極體明暗調變分析: 24 4.4 D65混光分析: 25 4.5 混光驗證: 31 第五章、 結論與未來展望 33 5.1 結論 33 5.2 未來展望 33 參考文獻 145zh_TW
dc.language.isoen_USzh_TW
dc.publisher精密工程學系所zh_TW
dc.relation.urihttp://www.airitilibrary.com/Publication/alDetailedMesh1?DocID=U0005-1608201015055400en_US
dc.subjectLEDen_US
dc.subject發光二極體zh_TW
dc.subjectmixingen_US
dc.subjectcolor coordinatesen_US
dc.subjectPWMen_US
dc.subject混光zh_TW
dc.subject色座標zh_TW
dc.subject脈波寬度調變zh_TW
dc.title紅/綠/藍發光二極體穩定混光光源分析與設計zh_TW
dc.titleAnalysis and design for stable mixed light source based on RGB LEDsen_US
dc.typeThesis and Dissertationzh_TW
Appears in Collections:精密工程研究所
文件中的檔案:

取得全文請前往華藝線上圖書館

Show simple item record
 
TAIR Related Article
 
Citations:


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.