Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/4261
標題: 微型化帶狀式麥克風製程研發與特性量測
Study on fabrication processing and related characteristions of miniature ribbon microphone
作者: 孫誠佑
Suen, Cheng-You
關鍵字: miniature ribbon microphone
微型帶狀式麥克風
diaphragm
frequency response
振膜
頻率響應
出版社: 精密工程學系所
引用: [1] E. C. Wente, “A condenser as a uniformly sensitive instrument for the absolute measurement of sound intensity”, Phys. Rev., vol. 10, pp. 39-63, 1917. [2] E. V. Carlson, “A subminiature condenser microphone, using electret technology”, The Hearing Dealer, April, 1973. [3] K. Matsuzawa, “Condenser microphones having a flat frequency response up to 500kHz”, Japan. Appl. Phys., vol. 17, pp. 451-152, 1978. [4] A. Dehe, “Silicon microphone development and application”, Sens. Actuators A, vol. 133, pp. 283-287, 2007. [5] 徐振諄, 高感度微型電容式矽微麥克風之研製, 國立中興大學精密工程研究所碩士論文, 民國96年. [6] C. W. Tan, J. Miao, “Analytical modeling for bulk-micromachined condenser microphone”, J. Acoust. Soc. Am., vol. 120, pp.750-761, Aug. 2006. [7] W. H. Hsieh, T. Y. Hsu, and Y. C. Tai, “A micromachined thin-film teflon electret microphone”, International Conference Solid-State Sensors and Actuators, pp. 425-428, 1997. [8] F. Harry, Olson, “A History of high-quality studio microphones”, J. Acoust. Soc., vol. 24, pp. 798-807, 1976. [9] F. Harry, Olson, “Microphones for recording”, J. Acoust. Soc., vol. 25, pp. 676-683, 1977. [10http://history.sandiego.edu/gen/recording/microphones2.html [11] http://vintagemicrophone.com/JShop/product.php?xProd=126 [12] G. M. Sessler and J. E. West, “Self-biased condenser microphone with high capacitance”, J. Acoust. Soc. Am., vol. 34, pp. 1787-1788, 1962. [13] P. R. Scheeper, A. G. H. van der, Donk, W. Olthuis, and P. Bergveld, “A review of silicon microphones”, Sens. Actuators A, vol. 44, pp.1-11, 1994. [14] R. Schellin and G. Hess, “A silicon subminiature microphone based on piezoresistive polysilicon strain gauges“, Sens. Actuators A, vol. 32, pp. 555-559, 1992. [15] M. Royer, J. O. Holmen, M. A. Wurm, O. S. Aadland and M. Glenn,“ZnO on Si integrated acoustic sensor”, Sens. Actuators A, vol. 4, pp. 357-362, 1983. [16] T.-J. Yao, “Parylene for MEMS applications”, Ph.D dissertation, Department of Electrical Engineering, California Institute of Technology, Pasadena, California, pp. 191-210, 2002. [17] H.-S. Noh, S. Kim, J. P. Hesketh, H. M, and L. Wong, “Miniature corrugated diaphragm for fiber-optic-linked pressure sensing (FOLPS)”, ASME International Mechanical Engineering Congress & Exposition Washington, D. C., pp. 16-21, 2003. [18] 邢泰剛, 微機電系統技術與應用, 行政院國家科學委員會精密儀器中心出版, pp. 544-557, 2003. [19] P. R. Scheeper, A. G. H. van der, Donk, W. Olthuis, and P. Bergveld,“Fabrication of silicon condenser microphone using single wafer technology”, J. Microelectromech. Syst. vol. 3, pp. 147-153, 1992. [20] R. Kressmann, M. Klaiber, G. Hess, “Silicon condenser microphones with corrugated silicon oxide/nitride electret membranes”, Sensors and Actuators A, vol. 100, pp. 301-309, 2002. [21] H. S. Kwon, K. C. Lee, “Double-chip condenser microphone for rigid backplate using DRIE and wafer bonding technology,” Sens. Actuators A, vol. 138, pp. 81-86, 2007. [22] P. R. Scheeper, A. G. H. van der, Donk, W. Olthuis, P. Bergveld, “A review of silicon microphones,” Sens. Actuators A, vol. 44, pp. 1-11, 1994. [23] A. Torkkeli, O. Rusanen, J. Saarilahti, H. Seppa, H. Sipola, J. Hietanen, “Capacitive microphone with low-stress polysilicon membrane and high-stress polysilicon backplate”, Sens. Actuators A, vol. 85, pp. 116-123, 2000. [24] X. Li, R. Lin, H. Kek, J. Miao, Q. Zou, “Sensitivity-improved silicon condenser microphone with a novel single deeply corrugated diaphragm”, Sens. Actuators A, vol. 92, pp. 257-262, 2001. [25] W. J. Wang, R. M. Lin, Q. B. Zou, X. X. Li, “Modeling ancharacterization of a silicon condenser microphone”, Journal of Micromechanics and Microengineering, vol. 14, pp. 403-409, 2004. [26] http://home.vicnet.net.an/~macinc/ness.9htm. [27] M. L. Gayford, B. Sc., C. Eng., M. I. E. E., A. C. G. I., D. I. C. Senior engineer, ITT Component Group, Harlow, “Electroacustic, microphone, earphones and loudspeakers”, London: Newnes-Butterworths Press, pp. 137-184. [28] 邢泰剛, 微機電系統技術與應用, 行政院國家科學委員會精密儀器中心出版, pp. 544-562, 2003. [29] A. J. Sprenkls, “A silicon subminiature electret microphone”, Ph.D. Dissertation, Twente University, Netherlands, 1988. [30] W. H. Hsieh, T.-Y. Hsu, and Y.-C. Tai, Int. Conf, “Solid-State Sensors and Actuators Transducers”, pp. 425-428, 1997. [31] J. Eargle, “The microphone book”, pp. 59-62, Oxford: Elsevier Press, 2004. [32] M. D. Giovanni, “Flat and corrugated diaphragm design handbook”, pp. 211-232, New York: CRC Press, 1982. [33] M. L. Gayford, ”Electroacoustic microphones, earphones and loudspeakers”, pp. 148-156, London: Newnes-Butterworths Press, 1970. [34] M. Mullenborn, P. Rombach, U. Klein, K. Rasmussen, J. F. Kuhmann, M. Heschel, ”Chip-size-packaged silicon microphones”, Sens. Actuators A, vol. 92, pp. 23-29, 2001. [35] M. P. Norton, “Fundamentals of noise and vibration analysis for engineer”, pp. 197-200, New York: Cambridge University Press, 1969. [36] A. G. H. van der, Donk, P. Bergveld and J. A. Voorthuyzen, “Optimal design of electret microphone MOSFET preamplifier”, J. Acoust. Soc., Am., vol. 91, pp. 2261-2269, 1992. [37] A. G. H. van der, Donk, J. A. Voorthuyzen and P. Bergveld, “General considerations of noise in microphone preamplifiers”, Sens. Actuators A, vol. 25, pp.515-520, 1991. [38] W. R. Bevan, R. B. Schulein, C. E. Seeler, “Design of a studio-quality condenser microphone using electret technology”, J. Audio Eng. Soc., vol. 26, pp. 947-957, 1978. [39http://searchnetworking.techtarget.com/sDefinition/0,,sid7_gci213018,00.html [40] D. P. Arnold, S. Gururaj, S. Bharadwaj, T. Nishida, M. Sheplak, “A piezoresistive microphone for aeroacustic measurement”, ASME Int. Mechanical Engineering Congress & Exposition, Proceedings of IMECE’01, pp. 1-8, 2001. [41] P. M. Morse, “Vibration and aound, international series in pure and applied physics”, New York: McGraw-Hill Press, 2nd ed., pp. 189-452, 1948. [42] B. B. Bouer, Shure Brothers, “Equivalent circuit analysis of mechanical-acoustic structures”, Inc. Chicago, Illinois, pp. 112-120, 1954. [43] 白明憲, 工程聲學, 全華科技圖書股份有限公司出版, pp. 5-61, 2005. [44] 王以真, 實用磁路設計, 全華科技圖書股份有限公司出版, pp.48-97, 2006. [45] 陳建盛, 矽晶麥克風之設計與製作, 國立交通大學電機與控制工程系碩士論文, 民國88年. [46] H. S. Noh, “Miniature corrugated diaphragm for fiber- opitc-linked pressure sensing (FOLPS)”, ASME Int. Mechanical Engineering Congress & Exposition Proceedings of IMECE’03, pp. 1-5, 2003. [47] 揚善國, 感應與量測度工程, 全華科技圖書股份有限公司, pp.7-21, 2003.
摘要: 本論文提出微型化帶狀式麥克風製程研發與特性量測,使用微機電技術將傳統鋁帶式麥克風微型化,在製程上提出以Ni/Co基板蝕刻的方式,降低濕蝕刻過程中高溫的製程,以減少薄膜元件的熱應力,提升整體製程的良率;磁路系統方面,藉由模擬分析及磁通密度量測系統,獲得較佳的磁路結構,以縮小整體麥克風的體積,提高微型化帶狀式麥克風的感度。傳統帶狀式麥克風體積為66 mm×32 mm×7.2 mm,而本研究所設計的微型化帶狀式麥克風體積則縮小為22 mm×15.5 mm×27.5 mm。 從實驗結果與材料的性質中可得知壓克力高分子材料具有可圖型化、厚度可旋轉塗佈至1 μm、低製程溫度的特性,可以獲得良好的麥克風靈敏度。另一方面,由於本研究的帶狀式麥克風屬於速度型的麥克風,振動的速度會影響到感度的好壞,因此本研究在振膜形狀上分別做出不同尺寸的孔洞,發現開洞面積越大,振膜機械感度越佳,對麥克風振膜在低頻時的感度有明顯的提升,最佳結構(振膜厚度2 μm、感應線圈長度43.7 cm、線圈阻抗264 Ω)的量測結果為取樣頻率1kHz下,感度為-77.6 dBV/Pa,若搭配放大電路的使用,即可符合市售規格-50~-60 dBV/Pa的標準。
This thesis presents the characteristic of miniature ribbon microphone. They were fabricated by micro-electro-mechanical system techniques. To enhance the overall yield by reducing thermal stress and process temperature, the Ni/Co substrate separating technique was proposed. Moreover the optimum magnetic system of miniature ribbon microphone was established in accordance with the result of simulation and magnetic flux measurement, which remarkably improved its sensitivity and miniatured volume. The volumn of ribbon microphone can be miniatured from 66 mm×32 mm×7.2 mm (traditional) to 22 mm×15.5 mm×27.5 mm. As concerning the diaphragm, 1 μm-thick patterned polymer material can be fabricated by spin coating, which proceedes at relatively low temperature (130℃). This is believed to enhance sensitivity of ribbon microphone. Moreover, ribbon microphone is a pressure gradient type and the vibration velocity of diaphragm affected its sensitivity. This thesis indicates that the area of holes on the diaphragm was proportional to the mechanical sensitivity of diaphragm. According to this design and optimized fabrication (diaphragm with 2μm thickness, coil with 43.7cm length and 264Ω resistance), the responsivity of miniature ribbon microphone is -77.6 dBV/Pa (@ 1k Hz). The miniatured ribbon microphone fabricated in this work could fit in with commercial requirement (-50~-60 dBV/Pa) as using the suitable amplifier.
URI: http://hdl.handle.net/11455/4261
其他識別: U0005-2308201016555900
文章連結: http://www.airitilibrary.com/Publication/alDetailedMesh1?DocID=U0005-2308201016555900
Appears in Collections:精密工程研究所

文件中的檔案:

取得全文請前往華藝線上圖書館

Show full item record
 
TAIR Related Article
 
Citations:


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.