Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/4262
標題: 具掩埋式電極發光二極體之研究
Study on GaN Light Emitting Diodes with Imbeded Electrodes
作者: 盧怡安
Lu, Yi-An
關鍵字: GaN
氮化鎵
LED
imbedded electrode
laser lift-off
roughness
發光二極體
無電極
雷射剝離技術
粗化
出版社: 精密工程學系所
引用: [1] T. C. Wen, S. J. Chang, L. W. Wu, Y. K. Su, W. C. Lai, C.H. Kuo, C. H. Chen, J. K. Sheu, and J. F. Chen, Electron Devices, IEEE Transactions 49,1093 (2002). [2] D. B. Eason, W. C. Hughes, J. Ren, M. Riegner, Z. Yu, J. W. Cook, J.F. Schetzina, G. Cantwell, and W. C. Harsch, Electron. Lett. 30,1178 (1994). [3] G. E. Stillman, V. M. Robbins, and N. Tabatabaie, Electron Devices, IEEE Transactions 31, 1643 (1984). [4] H. Sugawara, and M. Ishikawa, and G. Hatakoshi, App. Phys. Lett.58, 1010 (1991). [5] H. Sugawara, and M. Ishikawa, and G. Hatakoshi, App. Phys. Lett.61, 1752 (1992). [6] D. A. Vanderwater, I. H. Tan, G. E. Hofler, D. C. DeFevere, and F. A. Kish, IEEE. 85, 1752 (1997). [7] S. Nakamura, M. Senoh, N. Iwasa, S. Nagahama, T. Yamada, and T. Mukai, Jpn. J. Appl. Phys. 34, L1332 (1995). [8] F. A. Kish, F. M. Steranka, D. C. DeFevere, D. A. Vanderwater, K. G. Park, C. P. Kuo, T. D. Osentowski, M. J. Peanasky, J. G. Yu, R. M. Fletcher, D. A. Steigerwald, and M. G. Craford, Appl. Phys. Lett. 64, 2839 (1994). [9] F. A. Kish, D. A. Vanderwater, D. C. DeFevere, D. A. Steigerwald, G. E. Hofler, K. G. Park, and F. M. Steranka, Electron. Lett. 32, 132 (1996). [10] J. I. Pankove, and P. E. Norris, RCA (Radio Corporation of America)Review. 33, 377 (1972). [11] S. Yoshida, S. Misawa, and S. Gonda, Journal of Vacuum Science & Technology B. 1, 250 (1982). [12] M. Hao, T. Sugahara, H. Sato, Y. Morishima, Y. Naoi, L. T. Romano, and S. Sakai, Jpn. J. Appl. Phys. 37, L291 (1998). [13] Zukauskas, M. S. Shur, and R. Gaska, Introduction to Solid-State Lighting. New York: Wiley and Sons (2002). [14] S. Nakamura and S. F. Chichibu, Introduction to Nitride Semiconductor Blue Laser Diode and Light Emitter Diodes. London: Taylor and Francis (2000). [15] S. Nakamura and G. Fasol, The Blue Laser Diode: GaN Based Light Emitters and Lasers. Berlin: Springer (2000). [16] M. R. Krames, M. O. Holocomb, G. E. Hofler, C. C. Coman, E. I. Chen, I. H. Tan, P. Grillot, N. F. Gardner, H. C. Chui, J. W. Huang, S. A. Stockman, F. A. Kish, and M. G. Carford, Appl. Phys. Lett. 75, 2365 (1999). [17] M. R. Krames, G. Christenson, D. Coffins., L. W. Cook M. G. Craford, A. Edwards, R. M., Fletcher, N. Gardner, W. Goetz, W. Imler, E. Johnson, R. S. Kern, R. Khare, F. A. Kish, C. Lowery, M. J. Ludowise, R. Mann, M. Maranowski, S. Maranowski, P. S. Martin, J. O''Shea, S. Rudaz, D. Steigerwald, J. Thompson, J. J. Wierer, J. Yu, SPIE Proc. 3938, 2 (2000). [18] C. Huh, K. S. Lee, E. J. Kang, and S. J. Park, J. Appl. Phys. 93, p.9383, (2003). [19] S. J. Chang, L. W. Wu, Y. K. Su, Y. P. Hsu, W. C. Lai, J. M. Tsai, J. K. Sheu, and C. T. Lee, IEEE Photon Technol. Lett. 16, p.144 (2004). [20] S. M. Pan, R. C. Tu, Y.M. Fan, R. C. Yeh, and J. T. Hsu, IEEE Photon Technol. Lett. 15, p.646 (2003). [21] S. M. Pan, R. C. Tu, Y. M. Fan, R. C. Yeh, and J. T. Hsu , IEEE Photon Technol. Lett. 15, p.649 (2003). [22] C. S. Chang, S. J. Chang, Y. K. Su, C. T. Lee, Y. C. Lin, W. C. Lai, S. C. Shei, J. C. Ke, and H. M. Lo, IEEE Photon Technol. Lett. 16, p.750 (2004). [23] Jun-Yi Wu, Jun-Sheng Li, Ray-Hua Horng, and Dong-Sing Wuu, IEDMS 2008, 572. [24] Z. S. Luo, Y. Cho, V. Loryuenyong, T. Sands, N. W. Cheung, and M. C. Yoo, IEEE Photon Technol. Lett. 14, p.1400 (2002). [25] Ray-Hua. Horng, Xinhe. Zheng, Chuang-Yu. Hsien and Dong-Sing. Wuu, Appl. Phys.Lett., 93, p.021125, (2008). [26] 史光國,“半導體發光二極體及固態照明”, 全華科技圖書股份有限公司出版,台北,台灣, pp. 2.1-2.4.page. 2-52, (2005). [27] M. Boroditsky, T. F. Krauss, R. Coccioli, R. vrijen, R. Bhat and E.Yablovitch, Appl. Phys.Lett., 75, p.1036 (1999). [28] H. Y. Ryn, J. K. Hwang, Y. J. Lee and Y. H. Lee, IEEE Selected topics in QE, 8, p.231 (2002). [29] D. S. Wuu, W. K. Wang, W. C. Shih, R. H. Horng, C. E. Lee, W. Y. Lin, and J. S. Fang, IEEE Photon. Technol. Lett., 17, 2, 288, b, (2005). [30] 施敏 原著, 張俊彥 譯著, “半導體元件物理與製程技術,” 第三版, 高立圖書有限公司, 台北, 台灣, pp. 104-206 (2000). [31] D. K. Schroder, Semiconductor Material and Device Characterization. New York, Wiley (1998). [32] V. M. Burmedez, J. Appl. Phys. vol. 80, 1190 (1996). [33] Y. Xi and E. F. Schubert, Appl. Phys. Lett. 85, 2163 (2004). [34] Y. Xi, J. Q. Xi, Th. Gessmann, J. M. Shah, J. K. Kim, E. F. Schubert, A. J. Fischer, M. H. Crawford, K. H. A. Bogart, and A. A. Allerman, Appl. Phys. Lett. 86, 031907 (2005). [35] Lumileds, “Thermal Management Considerations for Super Flux LEDs,” Application Note, 1149-4. [36] S. Todoroki, M. Sawai, and K. Aiki, J. Appl. Phys. 58, 1124 (1985). [37] C. H. Liu, R. W. Chuang, S. J. Chang, Y. K. Su, L. W. Wu, C. C. Lin, Mater. Sci. & Eng. B, 112, 10 (2004). [38] J. K. Sheu, Y. K. Su, G. C. Chi, W. C. Chen, C. Y. Chen, C. N. Huang, J. M. Hong, Y. C. Yu, C. W. Wang, and E. K. Lin, J. Appl. Phys. 83, 3172 (1998). [39] J. K. Ho, C. S. Jong, C. C. Chiu, C. N. Huang, C. Y. Chen, and K. K. Shih, Appl. Phys. Lett. 74, 1275 (1999). [40] J. K. Ho, C. S. Jong, C. C. Chiu, C. N. Huang, K. K. Shih, L. C. Chen, F. R. Chen, and J. J. Kai, J. Appl. Phys. 86, 4491 (1999). [41] S. R. Jeon, Y. Ho. Song, H. J. Jang, and G. M. Yang, Appl. Phys. Lett. 78, 3265 (2001). [42] T. Margalith, O. Buchinsky, D. A. Cohen, A. C. Abare, M. Hansen, S. P.DenBaars, and L. A. Coldren, Appl. Phys. Lett. 74, 3930 (1999). [43] R. H. Horng, D. S. Wuu, Y. C. Lien, and W. H. Lan, Appl. Phys. Lett. 79, 2925 (2001). [44] C. S. Chang, S. J. Chang, Y. K. Su, C. H. Kuo, W. C. Lai, Y. C. Lin, Y. P. Hsu, S. C. Shei, J. M. Tsai, H. M. Lo, J. C. Ke, J. K. Sheu, IEEE. 50, 2208 (2003). [45] S. M. Pan, R. C. Tu, Y. M. Fan, R. C. Yeh, and J. T. Hsu, IEEE. 15, 646 (2003). [46] Z. Li, X. Hu, K. Chen, R. Nie, X. Luo, X. Zhang, T. Yu, B. Zhang, S. Chen, Z. Yang, Z. Chen and G. Zhang, Micron, 36, p.281 (2005). [47] M. V. Allmen and A. Blastter, Laser-Beam Interactions with Materials: Physical Principles and Application, 2nd Springer Publisher, Berlin (1995). [48] R. Groh, G. Gerey, L. Bartha and J. I. Pankove, Phys. Stat. Solidi. (a), 26, p.353 (1974). [49] C. J. Sun, P. Kung, A. Saxler, H. Ohsato, E. Bigan , M. Razeghi and D. K. Gaskill, J. Appl. Phys., 76, p.236 (1994). [50] M. E. Lin, B. N. Sverdlov and H. Morkoc, Appl. Phys. Lett., 63, p.3625 (1993). [51] W.S. Wong, Y. Cho, N.J. Quitoriano, T. Sands, A.B. Wengrow and N. W. Cheung, J. Electronic Mater., 28, p.1409 (1999). [52] 謝創宇, 具雙面粗化及高反射鏡面基板之高效率氮化鎵發光二極體之研製, 中興大學精密工程研究所碩士學位論文 (2008). [53] 吳俊儀, 週期性表面粗化氮化鎵發光二極體之研製, 中興大學精密工程研究所碩士學位論文 (2008). [54] 廖子維, 不同粗化形貌對氮化銦鎵發光二極體取光效率及接面溫度特性影響之研究, 中興大學精密工程研究所碩士學位論文 (2009). [55] Gábor Farkas, Quint van Voorst Vader, András Poppe, and György Bognár, IEEE Transactions on components and packaging technologies, 28, 1, (2005). [56] C. P. Wang and S. B. Huang , 工業材料雜誌, 266, p.1 (2009). [57] R. H. Horng, D. S. Wuu, S. C. Wei, C. Y. Tseng, M. F. Huang, K. H. Chang, P. H. Liu, and K. C. Lin, Jpn. J. Appl. Phys. 39, 2357 (2000). [58] Ray-Hua Horng, Xinhe Zheng, Chuang-Yu Hsieh, and Dong-Sing Wuu, Appl. Phys.Lett. 93, 021125 (2008) [59] 嚴國瑋, 具高反射鏡面之金屬銅基板氮化鎵發光二極體之研製, 中興大學 精密工程研究所碩士學位論文 (2007).
摘要: 本論文主要是利用基板轉移技術,配合雷射剝離技術(Laser lift-off;LLO)、乾/溼蝕刻技術(ICP-RIE、H3PO4)、雙面粗化(n-GaN、p-GaN)、高反射鏡面與高熱傳導基板,將其應用於藍光發光二極體,以無電極遮光的n-GaN layer朝上作為出光面,並且探討其元件光電特性及製程可行性。其中p-GaN是磊晶時利用低溫成長方式所產生的六角孔洞作為粗化結構,n-GaN則是在將磊晶膜轉換至結合高反射鏡面之高熱傳基板,雷射剝離將藍寶石基板移除之後,以氫氧化鈉溶液蝕刻成六角錐狀,並探討一般功率型發光二極體(45×45 mil2)在無電極遮光製程後對於光電效率之影響,以及對光取出效率的增益。 電特性方面,元件於基板的轉移過程並未造成電壓變化,隨操作電流加大至 350 mA時,Original-SR-LED(單面粗化-SR、藍寶石基板)、p-side up-DR-LED(p-GaN面朝上、雙面粗化-DR、高熱傳導矽基板)、n-side up-DR-LED(n-GaN面朝上、雙面粗化-DR、高熱傳導矽基板)及n-side up-DR-VBLED(n-GaN面朝上、雙面粗化-DR、垂直導通高熱傳導矽基板)之順向偏壓分別為4.06 V、4.11 V、4.38 V與4.97 V; 在逆向偏壓方面,當在-5 V時,漏電流分別為0.025 μA、0.025 μA 、0.023 μA與0.478 μA,前三結構特性幾乎不變,維持 -5 V時漏電流小於 2 μA的標準,此電特性結果顯示此製程研究之可行性。光特性方面(光強度),未封膠的情況下,以電流 700 mA注入,p-side up-DR-LED、n-side up-DR-LED與n-side up-DR-VBLED相較於Original-SR-LED分別提升119.83 %、158.74 %與26.64 %,研究結果以n-side up-DR-LED所提升效率為最佳,主要以雙面粗化結構為光強度主要提升原因。
Textured n-GaN side up LED with interdigitated imbedded electrodes (IIE) eliminating the electrode-shading loss with high reflection mirror on silicon substrate and double-side roughening both p-GaN and undoped-GaN layers have been investigated. The devices are subsequently fabricated with wafer-bond, laser lift-off and chemical dry/wet etching techniques. The roughness on p-GaN surface was fabricated via low temperature growth, and that on n-GaN surface was made by wet-etching. This n-GaN side up structure was useful to avoid light-absorbing and enhance the light efficiency. We compared the performance of 4-types LEDs: Original-LED/Sapphire with single rough surface(SR-LED), p-side up-LED with double rough surface(DR-LED), n-side up-DR-LED, n-side up-DR-VB(vertical electrodes by wafer bonding)LED. The forward voltage(at 350 mA) of 4-types LEDs is 4.06 V, 4.11 V, 4.38 V, 4.97 V respectively. The luminance intensity of the final 3-types LEDs(at 700 mA) is 119.83 %, 158.74 % and 26.64 % higher than that of the original LED, respectively. The performance of p-side up-DR-LED which is 119.83 % higher than that of original structure, yet worse than n-side up-DR-LED. It was worthy to mention that the area of electrode shading is only 13% of the light emitting area. Therefore, the obtained above results suggest that the optimum thin film LED structure is the n-GaN with double surface roughness and the high reflection mirror.
URI: http://hdl.handle.net/11455/4262
其他識別: U0005-2308201021062500
文章連結: http://www.airitilibrary.com/Publication/alDetailedMesh1?DocID=U0005-2308201021062500
Appears in Collections:精密工程研究所

Files in This Item:
There are no files associated with this item.


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.