Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/4263
標題: 高功率發光二極體之前瞻性熱管理設計與構裝技術製作
Study on Thermal Management Design and Package Technology Fabrication for High Power Light-Emitting Diodes
作者: 洪志欣
Hong, Jhih-Sin
關鍵字: light-emtting diodes
發光二極體
thermal management
GaN
diamond powder
composite material
composite solder
熱管理
氮化鎵
鑽石粉
複合材料
複合銲料
出版社: 精密工程學系所
引用: 參考文獻 [1] M. Arik, J. Petroski, and S. Weaver, “Thermal Challenges in the Future Generation Solid State Lighting Application: Light Emitting Diodes” , 2002 Inter Society Conf. On Thermal Phenomena, p. 113, 2002 [2] J. Petroski, “Thermal Challenges Facing New Generation Light Emitting Diodes (LED) for Lighting Applications” , Solid State Lighting, Proc. of SPIE, Vol. 4776, p. 215, 2002 [3] F. M.Steranka, F.M. Steranka, J. Bhat, D. Collins, L. Cook, M.G. Craford, R. Fletcher, N. Gardner, P. Grillot, W. Goetz, M. Keuper, R. Khare, A. Kim, M. Krames, G. Harbers, M. Ludowise, P.S. Martin, M. Misra, G. Mueller, R. Mueller-Mach, S. Rudaz, Y.-C. Shen, D. Steigerwald, S. Stockman, S. Subramanya, T. Trottier, J.J. Wierer, “High Power LEDs Technology Status and Market Application” , Phys. Stat. sol.(a)194, No.2, p. 380, 2002 [4] http://www.materialsnet.com.tw/DocView.aspx?id=7548 [5] H. Sugawara, M. Ishikawa, and G. Hatakoshi, “High Efficiency InGaAlP/GaAs Visible Light Emitting Diodes” , App. Phys. Lett., vol. 58, p. 1010, 1991. [6] H. Sugawara, M. Ishikawa, and G. Hatakoshi, “High Brightness InGaAlP Green Light Emitting Diodes” , App. Phys. Lett., vol. 61, p. 1752, 1992. [7] D. A. Vanderwater, I. H. Tan, G. E. Hofler, D. C. DeFevere, and F. A. Kish, “High Brightness AlGaInP Light Emitting Diodes” , IEEE., vol. 85, p. 1752, 1997. [8] S. Nakamura, M. Senoh, N. Iwasa, S. Nagahama, T. Yamada, and T. Mukai, “Superbright Green InGaN Single Quantum Well Structure Light Emitting Diodes” , Jpn. J. Appl. Phys., vol. 34, p. 1332, 1995. [9] F. A. Kish, F. M. Steranka, D. C. DeFevere, D. A. Vanderwater, K. G. Park, C. P. Kuo, T. D. Osentowski, M. J. Peanasky, J. G. Yu, R. M. Fletcher, D. A. Steigerwald, and M. G. Craford, “Very High Efficiency Semiconductor Wafer Bonded Transparent Substrate (AlxGa1–x)0.5In0.5P/GaP Light Emitting Diodes” , Appl. Phys. Lett., vol. 64, p. 2839, 1994. [10] F. A. Kish, D. A. Vanderwater, D. C. DeFevere, D. A. Steigerwald, G. E. Hofler, K. G. Park, and F. M. Steranka, “High Reliable and Efficient Semiconductor Wafer Bonded AlGaInP/GaP Light Emitting Diodes”, Electron. Lett., vol. 32, p. 132 , 1996. [11] A. Zukauskas, M. S. Shur, and R. Gaska, “Introduction to Solid-State Lighting” , New York: Wiley and Sons Press, p. 12, 2002. [12] M. Hao, T. Sugahara, H. Sato, Y. Morishima, Y. Naoi, L. T. Romano, and S. Sakai, “Study of Threading Dislocations in Wurtzite GaN Films Grown on Sapphire by Metalorganic Chemical Vapor Deposition”, Jpn. J. Appl. Phys., vol. 37, p. 291 , 1998. [13] E. Kuokstis, C. Q. Chen, J. W. Yang, M. Shatalov, M.E. Gaevski, V. Adivarahan, and M. A. Khan, “Room Temperature Optically Pumped Laser Emission from a-plane GaN with High Optical Gain Characteristics”, Appl. Phys. Lett., vol. 84, p. 2998, 2004 [14] A. Zukauskas, M. S. Shur, and R. Gaska, “Introduction to Solid-State Lighting” , New York: Wiley and Sons Press, p. 12 , 2002. [15] S. Nakamura, and G. Fasol, “The Blue Laser Diode: GaN Based Light Emitters and Lasers” , Berlin: Springer Press, p. 10, 2000. [16] S. Nakamura, and S. F. Chichibu, “Introduction to Nitride Semiconductor Blue Laser Diode and Light Emitter Diodes” , London:Taylor and Francis Press, p. 45, 2000. [17] S. J. Chang, Y. C. Lin, Y. K. Su, C. S. Chang, T. C. Wen, S. C. Shei, J.C. Ke, C. W. Kuo, S. C. Chen, and C. H. Liu, “Nitride-based LEDs fabricated on patterned sapphire substrates”, Solid-State Electron. 47, p.1539–1542(2003). [18] N. Narendran and Y. Gu,“Life of LED-Based White Light Sources”, Journal of Display Technology, IEEE/OSA, Vol. 1, p. 1,2005 [19] 史光國, “半導體發光二極體及固態照明”,全華科技, p.2.1, 2005. [20] 黃調元,“半導體元件物理與製作技術”,國立交通大學出版社,p.41, 2003. [21] Y. Xi and E. F. Schubert, “Junction Temperature Measurement in GaN Ultraviolet Light Emitting Diodes Using Diode forward Voltage Method” , Appl. Phys. Lett. vol. 85, p. 2163, 2004. [22] Y. Xi, J. Q. Xi, T. Gessmann, J. M. Shah, J. K. Kim, E. F. Schubert, A. J. Fischer, M. H. Crawford, K. H. A. Bogart, and A. A. Allerman, “Junction and Carrier Temperature Measurements in Deep Ultraviolet Light Emitting Diodes Using Three Different Methods” , Appl. Phys. Lett. vol. 86, p. 1907, 2005. [23] P. Incropera and P. DeWitt, “Introduction To Heat Transfer 4th” , New York:John Wiley & Sons Press, p. 13, 2001. [24] J. Moran and N, Shapiro, “Fundamentals of Engineering Thermodynamics 6th” , New York:John Wiley & Sons Press, p. 110, 2004. [25] www.lumiled.com. ,“Luxeon Reliability” , Reference Design RD25. [26] P. Incropera, P. DeWitt, L. Bergman, S. Lavine, “Fundamentals of Heat and Mass Transfer 4th”, New York:John Wiley & Sons Press, p. 69, 1997. [27] http://www.lumileds.com. [28] N. Guglielmi, “Kinetics of the Deposition of Inert Particles from Electrolytic Baths”, Journal of Electrochemical Society, Vol.119, 1972, pp.1009-1012. [29] Q. Sun, O.T. Inal, “Fabrication and characterization of diamond/copper compositesfor thermal management substrate applications” , Material Science and Engineering B, 41, 1996, p. 261-266. [30] 宋健民, “超硬材料”,全華科技, p.2-6,2000. [31] C. M. Sung,M. C. Kan,S. C. Hu,Michael Sung, “Diamond Metal (DiaMet) Composite Materials:The Hea ThruTM Heat Spreader for Computer CPU” , Industrial Materials Magazine ,265, p.1 (2009). [32] T. Schubert, Ł. Ciupin´ski, W. Zielin´ski, A. Michalski,T. Weisgarber and B. Kieback, “Interfacial characterization of Cu/diamond composites prepared by powder metallurgy for heat sink applications” Scripta Materialia,Volume 58, Issue 4, February 2008, p. 263-266. [33] ,P. H.Chen, C. L. Lin, Y. K. Liu, T. Y. Chung, and C. Y. Liu, “Diamond heat spreader layer for high–power thin GaN light-emitting diodes”, IEEE photonics technology letters, 20, p. 845–847 (2008). [34] P. Hui and H. S. Tan, “Temperature distributions in a heat dissipation system using a cylindrical diamond heat spreader on a copper heat sink”, Journal of Applied Physics, 75, p. 748–757 (1994). [35] Jack Cheng, “The Status and Development of Insulated Material Substrate for High Powered-LED”, Industrial Materials Magazine ,261, (2008). [36] 蕭翔允,“高散熱發光二極極體構裝設計與實做研究,”國立中興大學材料工程學系碩士論文,民國97年 [37] http://www.indium.com [38] http://www.chct.com.tw/TVS/TVS.HTM [39] http://www.rapi-tech.com.tw [40] Gabor Farkas, Quint van Voorst Vader, Andras Poppe, and Gyorgy Bognar, “Thermal Investigation of High Power Optical Devices by Transient Testing” IEEE Transactions on components and packaging technologies, 28, 1, (2005). [41] C. P. Wang, S. B. Huang, “Technology of Interface Thermal Resistance Measurement for LED Package”, Industrial Materials Magazine ,266, (2009).
摘要: LED產品的生命週期、亮度、穩定度都會隨著接面溫度提高而衰竭,70%的LED會因為過高的接面溫度而故障,因此,接面溫度越低其LED的發光強度與使用壽命則越優異,所以做好LED的熱管理,這格外顯得重要。若欲降低LED接面溫度,則必須從LED晶片、封裝與結構部份著手,將各層級所產生的熱阻降至最低,即可獲得一相對較低的接面溫度,進而可提升 LED壽命與亮度。 本論文研究方法主要是改變LED的晶片型式、封裝型態來達到降低LED封裝熱阻以及增加其整體散熱能力為目的。論文實驗設計中,主要是將鑽石粉加入電鍍銅溶液中,來改變銅金屬原先具有的熱學材料特性,除此之外,也將鑽石粉均勻混合添加入LED固晶銲料錫銀銅(SnAgCu)中。鑽石它具有許多材料優越的特性,如高熱傳導(~2000W/mK)、低熱膨脹係數(4~8 ppm/°C)、高熱擴散系數(12.7 cm2/sec)等,它能有效提高複合材料的熱學性質,能改變材料特性等。實驗製程中,搭配半導體製程技術並且透過精密複合電鍍技術,將高熱傳導的鑽石粉加入電鍍液硫酸銅中,之後在高功率氮化鎵(GaN)藍光LED藍寶石基板地方,研製出具有超散熱鑽/銅光杯結構的LED晶片,藉由鑽/銅的高熱傳導特性(700~800 W/mK),能有效直接將LED內部熱能傳導至散熱基板上,再者,搭配複合銲料(composite solder >80W/mK)再將晶片固晶於不同形式之散熱基板上,例如,金屬基印刷電路板(MCPCB)以及類鑽碳散熱片(Diamond Like Carbon,DLC)等。如此封裝結構,能給予LED極短之熱傳路徑並且提高散熱能力,能有效降低LED封裝熱阻,也可降低LED表面溫度進而提高光功率及發光效率等。 實驗結果中,在熱阻表現方面,最佳化前瞻性鑽/銅光杯封裝結構之LED以錫銀銅添加鑽石粉固晶在DLC散熱基板,其熱阻為4.6K/W,低於一般原始封裝結構以錫銀銅固晶在MCPCB散熱基板5.9K/W(約128%)。表面溫度方面,當注入電流為350~1000mA(1W~5W) 時為40.29~50.23 ℃,低於一般原始封裝結構5.4~24.5℃(約13~45%)。光強度表現方面為6969.02~13134.27 mcd高於一般原始封裝結構1799~3973 mcd(約38~43%)。光功率表現方面為328.47~729.11mW,高於一般原始封裝結構75.48~164.24mW約增加30%。超散熱鑽/銅光杯結構在發光效率方面,能比原始封裝結構增加5.76%。
In this study, the effects of chip types and package materials of LEDs have been investigated on thermal resistance and heat dissipation. Diamond has many superiority material properties, for example, highly thermal conductive (~2000W/mK), low thermal expansion coefficient and highly diffusion coefficient. It was found that the diamond electroplating Cu with diamond powder could able to change the material characteristic of copper. The diamond-added copper heat spreader (diamond/Cu) presents excellent thermal conductive capability (700~800W/mK). In addition, was used to instead of SnAgCu solder. In the process, we integiated the semiconductor process technique and composite-electroplating technique to make a super highest Cap-shaped diamond/Cu structure of LEDs chip. Here, direct contact of sapphire with diamond/Cu has been presents demonstrated to be useful in enhancing thermal extraction from sapphire-based LEDs. Thus, the bottlenecks of thermal dissipation are the die bounding solder and heat sink. The die-bonding material of solder with and without diamond powder mounted on metal core printed circuit board (MCPCB) or diamond like carbon(DLC) heat sink. Experimental results show the thermal resistance of optimization Cap-shaped diamond/Cu package on DLC heat sink using solder is 4.6K/W. The conventional LED package is 10.5 K/W (LED/solder/MCPCB). It is lower than that of conventional LED package 5.9K/W(128%). When the optimization package LED injected current is 350mA (1W), the surface temperature is 40.29℃. When injected current is 1000mA (5W), the surface temperature is 50.23℃ That is lower than to conventional LED package by 5.4℃ and 24.3℃(13% and 45%). The luminous intensity is 6494 mcd and 13134mcd that is higher than to conventional LED package by 1799 mcd and 3973mcd (38% and 43%). The output power is 328.47 mW and 729.11mW that is higher than conventional LED package by 75.48mW and 164.24mW(30%). In power efficiency, the optimization of Cap-shaped diamond/Cu package structure is higher than conventional LED package by 5.76%.
URI: http://hdl.handle.net/11455/4263
其他識別: U0005-2308201022155600
文章連結: http://www.airitilibrary.com/Publication/alDetailedMesh1?DocID=U0005-2308201022155600
Appears in Collections:精密工程研究所

文件中的檔案:

取得全文請前往華藝線上圖書館



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.