Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/4265
標題: 埋入式電極氮化鎵發光二極體之製程研發
Process Development of GaN Light-Emitting Diodes with Embedded Contacts
作者: 莊秉翰
Chuang, Bing-Han
關鍵字: GaN
氮化鎵
LED
imbedded electrode
laser lift-off
surface roughening
發光二極體
埋入式電極
雷射剝離技術
表面粗化
出版社: 精密工程學系所
引用: [1] G. B. Stringfellow, “High brightness light emitting diode,” Academic Press Inc. Boston, pp.149-219, 1997. [2] H.Sugawara, M. Ishikawa and G. Hatakoshi, “High-efficiency InGaAlP/GaAs visible light-emitting diodes,” App. Phys. Lett., vol. 58, pp.1010-1012, 1991. [3] H. Sugawara, K. ltaya, H. Nozaki and G. Hatakoshi, “High-brightness lnGaAlP green light-emitting diodes,” App. Phys. Lett., vol. 61, pp. 1775-1777, 1993. [4] D. A. Vanderwater, I. H. Tan, G. E. Hofler, D. C. DeFevere, F. A. Kish, “High-brightness AlGaInP light emitting diodes,” IEEE Invited paper., vol. 85, pp. 1752-1764, 1997. [5] A. N. Alderman, “Where are the high-voltage GaN products,” Anagenesis, Inc., 2010. [6] A. Zukauskas, M. S. Shur and R. Gaska, “Introduction to Solid-State Lighting,” New York: Wiley, pp.5-9, 2002. [7] S. Nakamura and S. F. Chichibu, “Introduction to Nitride Semiconductor Blue Laser Diode and Light EmittersDiodes,” London: Taylor and Francis, pp.11-17, 2000. [8] S. Nakamura and G. Fasol, “The Blue Laser Diode: GaN Based Light Emitters and Lasers,” Berlin: Springer, pp. 6-10, 2000. [9] M. R. Krames, M. Ochinai-Holocomb, G. E. Hofler, C. Carter-Coman, E. I. Chen, I. H. Tan, P. Grillot, N. F. Gardner, H. C. Chui, J. W. Huang, S. A. Stockman, F. A. Kish, and M. G. Carford, “High-power truncated-inverted-pyramid (AlxGa1-x)0.5In0.5P/GaP light-emitting diodes exhibiting >50% external quantum efficiency,” Appl. Phys. Lett., vol.75, pp. 2365-2367, 1999. [10] D. S. Wuu, W. K. Wang, W. C. Shih, R. H. Horng, C. E. Lee, W. Y. Lin, and J. S. Fang, “Enhanced output power of near-ultraviolet InGaN–GaN LEDs grown on patterned sapphire substrates,” IEEE Photon. Technol. Lett., vol.17, No.2, pp. 288-290, 2005. [11] T. Egawa, B. Zhang, and H. Ishikawa, “High performance of InGaN LEDs on (111) silicon substrates grown by MOCVD,” IEEE Electron. Device Lett., vol.26, No.3, pp.169-171, 2005. [12] J. J. Wierer, D. A. Steigerwald, M. R. Krames, J. J. O’Shea, M. J. Ludowise, G. Christenson, Y.-C. Shen, C. Lowery, P. S. Martin, S. Subramanya, W. Go‥ tz, N. F. Gardner, R. S. Kern and S. A. Stockman, “High-power AlGaInN flip-chip light-emitting diodes,” App. Phys. Lett., vol.78, pp.3379-3381, 2001. [13] R. H. Horng, D. S. Wuu, S. C. Wei, C. Y. Tseng, M. F. Huang, K. H. Chang, P. H. Liu and K. C. Lin, “AlGaInP light-emitting diodes with mirror substrates fabricated by wafer bonding,” App. Phys. Lett., vol.75, pp.3054-3056, 1999. [14] R. H. Horng, S. H. Huang, D. S. Wuu and C. Y. Chiu, “AlGaInP/mirror/Si light-emitting diodes with vertical electrodes by wafer bonding,” App. Phys. Lett., vol.82, pp.4011-4013, 2003. [15] M. K. Kelly, O. Ambacher, B. Dahlheimer , G. Groos, R. Dimitrov, H. Angerer and M. Stutzmann, “Optical patterning of GaN films,” Appl. Phys. Lett., vol.69, pp.1749-1751, 1996. [16] P. R. Tavemier and D. R. Clarke Dunn, “Mechanics of laser-assisted debonding of films,” J. Appl. Phys., vol.89, pp. 1527-1536, 2001. [17] Z. Li, X. Hu, K. Chen, R. Nie, X. Luo, X. Zhang, T. Yu, B. Zhang, S. Chen, Z. Yang, Z. Chen and G. Zhang, “Preparation of GaN-based cross-sectional TEM specimens by laser lift-off,” Micron, vol.36, pp.281-284, 2005. [18] M. V. Allmen and A. Blastter, “Laser-beam interactions with materials: physical principles and application,” 2nd Springer Publisher, Berlin, pp.24-27, 1995. [19] R. Groh, G. Gerey, L. Bartha and J. I. Pankove, “On the thermal decomposition of GaN in vacuum,” Phys. Stat. Solidi., vol.26, pp.353-357, 1974. [20] C. J. Sun, P. Kung, A. Saxler, H. Ohsato, E. Bigan , M. Razeghi and D. K. Gaskill, “Thermal stability of GaN thin films grown on (0001) Al2O3, (01 2) Al2O3 and (0001) Si6H-SiC substrates,” J. Appl. Phys., vol.76, pp.236-241, 1994. [21] M. E. Lin, B. N. Sverdlov and H. Morkoc, “Thermal stability of GaN investigated by low-temperature photoluminescence spectroscopy,” Appl. Phys. Lett., vol.63, pp.3625-3627, 1993. [22] W. S. Wong, T. Sands, N. W. Cheung, M. Kneissl, D. P. Bour, P. Mei, L. T. Romano and N. M. Johnson, “Fabrication of thin-film InGaN light-emitting diode membranes by laser lift-off,” Appl. Phys. Lett., vol.75, pp.1360-1362, 1999. [23] W. S. Wong, Y. Cho, N. J. Quitoriano, T. Sands, A. B. Wengrow and N. W. Cheung, “Integration of GaN thin films with dissimilar substrate materials by Pd-In metal bonding and laser lift-off,” J. Electron. Mater., vol.28, pp.1409-1413, 1999. [24] 施敏 原著, 張俊彥 譯著, “半導體元件物理與製程技術,” 第三版, 高立圖書有限公司, 台北, 台灣, pp.104-115, 2000. [25] 施敏 原著, 張俊彥 譯著, “半導體元件物理與製程技術,” 第三版,高立圖書有限公司, 台北, 台灣, pp.192-206, 2000. [26] D. K. Schroder, “Semiconductor Material and Device Characterization”, pp.335-337, 1990. [27] V. M. Burmedez, “Study of oxygen chemisorption on the GaN(0001)-(1×1) surface,” J. Appl. Phys., vol.80, pp.1190-1200, 1996. [28] 史光國, “半導體發光二極體及固態照明,” 全華科技圖書股份有限公司出版, pp. 2-1 – 2-72, 2005. [29] C. Huh, K. S. Lee, E. J. Kang and S. J. Park, “Improved light-output and electrical performance of InGaN-based light-emitting diode by microroughening of the p-GaN surface,” J. Appl. Phys., vol.93, pp.9383-9385, 2003. [30] P. C. K. Kwok, C. C. Chan and E. Herbert Li, “Designing an external efficieny of over 30% for light emitting diode,” IEEE, vol.1, pp.187-188, 1998. [31] E. H. Li, C. C. Chan and P. C. K. Kwok, “Optimization of textured-surface light emitting diode,” Electron Devices Meeting Proceedings., IEEE, pp.6-9, 1998. [32] Z. S. Luo, Y. Cho, V. Loryuenyong, T. Sands, N. W. Cheung, and M. C. Yoo, “Enhancement of (In, Ga)N light-emitting diode performance by laser liftoff and transfer from sapphire to silicon,” IEEE Photon. Technol. Lett., vol.14, pp.1400-1402, 2002. [33] R. H. Horng, X. Zheng, C. Y. Hsien and D. S. Wuu, “Light extraction enhancement of InGaN light-emitting diode by roughening both undoped micropillar-structure GaN and p-GaN as well as employing an omnidirectional reflector”, Appl. Phys. Lett., vol.93, pp.021125-021125-3, 2008. [34] C. H. Liu, R. W. Chuang, S. J. Chang, Y. K. Su, L. W. Wu and C. C. Lin, ”InGaN/GaN MQW blue LEDs with GaN/SiN double buffer layers,” Mater. Sci. & Eng. B., vol.111, pp.214-217, 2004. [35] J. K. Sheu, Y. K. Su, G. C. Chi, W. C. Chen, C. Y. Chen, C.N.Huang,J. M. Hong, Y. C. Yu, C. W. Wang and E. K. Lin, “The effect of thermal annealing on the Ni/Au contact of p-type GaN,” J. Appl. Phys., vol.83, pp.3172-3175, 1998. [36] S. R. Jeon, Y. Ho. Song, H. J. Jang and G. M. Yang, “Lateral current spreading in GaN-based light-emitting diodes utilizing tunnel contact junctions,” Appl. Phys. Lett., vol.78, pp.3265-3267, 2001. [37] T. Margalith, O. Buchinsky, D. A. Cohen, A. C. Abare, M. Hansen, S. P.DenBaars and L. A. Coldren, “Indium tin oxide contacts to gallium ni-tride optoelectronic devices,” Appl. Phys. Lett., vol.74, pp.3930-3932, 1999. [38] R. H. Horng, D. S. Wuu, Y. C. Lien, and W. H. Lan, “Low-resistance and high-transparency Ni/indium tin oxide ohmic contacts to p-type GaN,” Appl. Phys. Lett., vol.79, pp.2925-2927, 2001. [39] C. S. Chang, S. J. Chang, Y. K. Su, C. H. Kuo, W. C. Lai, Y. C. Lin, Y. P. Hsu, S. C. Shei, J. M. Tsai, H. M. Lo, J. C. Ke and J. K. Sheu, “High brightness InGaN green LEDs with an ITO on n++-SPS upper contact”, IEEE Trans. Electron Devices, vol.50, pp.2208-2212, 2003. [40] S. M. Pan, R. C. Tu, Y. M. Fan, R. C. Yeh, and J. T. Hsu, “Enhanced output power of InGaN–GaN light-emitting diodes with high-transparency nickel-oxide–indium-tin-oxide ohmic contacts,” IEEE Photon. Technol. Lett., vol.15, pp.646-648, 2003. [41] R. H. Horng, D. S. Wuu, S. C. Wei, M. F. Huang, K. H. Chang, P. H. Liu, and K. C. Lin, “AlGaInP/AuBe/glass light-emitting diodes fabricated by wafer bonding technology”, Appl. Phys. Lett., vol.75, pp.154-156, 1999 [42] R. H. Horng, X. Zheng, C. Y. Hsieh and D. S. Wuu, “Light extraction enhancement of InGaN light-emitting diode by roughening both undoped micropillar-structure GaN and p-GaN as well as employing an omnidirectional reflector,” Appl. Phys. Lett., vol.93, pp.021125-021125-3, 2008.
摘要: 本論文主要是配合具高反射鏡面,雙面粗化技術,晶圓貼合技術,雷射剝離技術以及平坦化製程技術,研製作出具高反射鏡面矽基板之n型氮化鎵朝上(n-side up)無電極遮蔽水平電極發光二極體(埋入式電極結構)。此結構可解決傳統藍寶石基板p型氮化鎵朝上(p-side up)發光二極體結構,或現今n-side up薄膜型氮化鎵垂直元件電極遮光的問題,更可因為製作成n-side up 元件,而發光面積增加,且因反射鏡面與n-side up之n型氮化鎵粗化結構,其有助於光之萃取。具有此結構之發光二極體,在發光面積為1 mm2 時,其發光光功率可達360 mW(@350 mA),比傳統藍寶石基板之LED晶片元件提升64.90%,而比p-side up LED晶片元件提升了16.58%。 在電特性方面,n-side up-DR-Si-sub LED元件在350mA電流注入時,順向偏壓分別為4.417 V,p-side up-DR-Si-sub LED元件為4.384 V而original-SR-LED則為4.602 V;在逆向偏壓方面,當在-5 V時,漏電流部份分別為0.384 μA、0.132 μA 、0.131 μA,前三結構特性幾乎不變,維持 -5 V時漏電流小於 2 μA的標準,從電特性結果顯示,在此製程研究裡,可以相對達到製程穩定性以及高良率之性能表現。光特性方面,封裝前之光輸出功率以電流 350 mA注入時,n-side up-DR-LED、p-side up-DR-LED及original-SR-LED分別為239.81 mW與214.742 mW以及173.132 mW;電光轉換效率分別為14.84 %、14.0 %及10.8 %;光取出率分別為36.66 %、32.82 %與26.46 %。封裝後之光輸出功率以350mA電流注入時,n-side up-DR-LED、p-side up-DR-LED、Original-SR-LED分別為360.15 mW與308.94 mW以及218.414 mW;電光轉換效率分別為22.28 %、20.13 %以及12.73 %;光取出率分別為55 %、47.2 %及33.4 %。在經環氧樹脂封膠後,n-side up-DR-Si-Sub LED元件提升了33.3 %光輸出功率,而p-side up-DR-Si-Sub LED元件以及original-SR-LED則分別提升30.4 %、20.6 %。從研究結果得以證實,以n-side up-DR-LED所提升之效率為最佳,主要以雙面粗化結構及排除電極遮蔽之影響為主要外部量子效率提升原因。
URI: http://hdl.handle.net/11455/4265
其他識別: U0005-2402201123172900
文章連結: http://www.airitilibrary.com/Publication/alDetailedMesh1?DocID=U0005-2402201123172900
Appears in Collections:精密工程研究所

文件中的檔案:

取得全文請前往華藝線上圖書館

Show full item record
 
TAIR Related Article
 
Citations:


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.