Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/4277
標題: 卡門渦列作用驅動之電磁式能量擷取器
Electromagnetic energy harvester based on vibration induced by the Karman Street
作者: 邱俊元
Chiu, Chun-Yuan
關鍵字: electromagnetic energy harvester
電磁式能量產生器
PDMS diaphragm
permanent magnet
solenoid
Von Karman vortex street
PDMS薄膜
永久磁鐵
螺旋線圈
馮卡門渦列
出版社: 精密工程學系所
引用: 黃玉婷、唐敏注,電磁式能量擷取發電裝置,世界材料網。 賴騰憲,2006,聲波致動式微型發電機於手機能源系統之應用,逢甲大學,碩士論文。 Beeby, S.P., Tudor, M.J., Koukharenko,E., White, N.M., O’Donnell, T., Saha, C., Kulkarni, S., Roy, S., (2005), Design and performance of a microelectromagnetic vibration-powered generator, TRANSDUCERS''05. The 13th International Conference on Solid-State Sensors, Actuators and Microsystems, Vol. 1, pp. 780 – 783, June 5-9 2005. Beeby, S. P., Tudor, M. J., White, N. M., (2006), Energy harvesting vibration sources for Microsystems application, Meas. Sci. Technol. 17 R175-95. Chang, K.-T., Ouyang, M., (2006), Rotary ultrasonic motor driven by a disk-shaped ultrasonic actuator, IEEE Transactions on Industrial Electronics, Vol. 53, pp. 831- 837, . Cullity, B.D., (1972) Introduction to magnetic materials, Addison-Wesley, Reading, MA, pp. 527. Edward M.P., (2004), Electricity and magnetism, Berkeley Physics Course, Vol. 2, 2. Eletro Mechanical System (MEMS), pp. 237-240, 2004. Glynne-Jones, P., Tudor, M. J., Beeby, S. P., White, N. M., (2004), An electromagnetic vibration-powered generator for intelligent sensor systems, Sensors and actuators A: Physical, Vol. 110, Issues 1-3, pp. 344-349, 1. Hetrick, R.E., (1989), A vibrating cantilever magnetic field sensor, Sensors and Actuators, vol. 6, pp. 197-207. Holmes, A. S., Hong, G., Pullen, K. R., (2005), Axial-flux permanent magnet machines for micropower generation, J. Microelectromech. Syst. 14. pp. 54-62. Kulah, H., Najafi, K., (2004), An electromagnetic micro power generator for low frequency environmental vibrations, 17th IEEE International Conference on Micro Li, W.J., Ho, T.C.H., Chan, G.M.H., Leong, P.H.W., Wong, H.Y., (2000), Infrared signal transmission by a laser-micromachined vibration-induced power generator, 2000 Proceedings of the 43rd IEEE Midwest Symposium on Circuits and Systems, Vol. 1, pp. 236 - 239, 2000. Raisigel, H., Cugat, O., Delamare, J., (2006), Permanent magnet planar micro-generators”Sensors and Actuators, A 130 - 131. pp. 438-444. Roundy, S.,(2005), On effectiveness of vibration-based emergy harvesting, J. Intell. Mater. Syst. Struct.16 pp. 809-823. Sherawood, C., Yates, R.B., (1997), Development of an electromagnetic microgenerator, Electronics letters 23rd, Vol. 33, No.22. Soohoo, R. F., (1979), Magnetic thin film inductor for integrated circuit application, IEEE Trans. Magn. Vol. 15, no.6, pp. 1803-1805.. Tang,W.C., Nguyen,T.-C.H., Judy, M.W., Howe,R.T., (1990), Electrostatic combdrive of lateral polysilicon resonators, Sensora and Actuators A, 21-23, pp. 328-331. Trifon, M., Liakopoulos, W. Z., Chong, H. A., (1996), Electroplated thick coNiMnP permanent magnet arrays for micromachined magnetic device applications, IEEE. Wagner, B., Benecke,W., (1991), Microfabricated actuator with moving permanent magnet, in Proc. IEEE Microelectro-Mechanical Systems Workshop, pp. 27-32. Wagner, B., Benecke, W., Engelmann, G., Simon, J., (1992), Microactuators with moving magnets for linear, torsional, or multiaxial motion”, Sensors and Actuators A, 32, pp. 598-603. Wang, L., Yuan, F.G., (2008), Vibration energy harvesting by magnetostrictive material, Smart Material and Structures, Vol, 17, 045009 (14pp). Wang,P., Tanaka, K., Sugiyama, S., Dai,X., Zhao, X., Lin, J., (2009), A micro electromagnetic low level vibration energy harvester based on MEMS technology, Microsyst Technol, Vol, 15, pp. 941-945,. White, F.M., (2008), Fluid Mechanics sixth edition and McGraw-Hill. Williams, C.B., Yates, R.B., (1996), Analysis of a micro-electric generator for microsystems, Sensors and Actuators A: Physical, Vol. 52, Issues 1-3, pp. 8-11, March-April.
摘要: 本文是探討馮卡門渦列作用驅動之電磁式能量擷取器的機構,此能量擷取器的主要動作方式系由以一穩定的重力流流入流道內,並在流道內橫置一梯形角柱體,藉由水流流過此梯形角柱體而在其後方流場引發馮卡門渦列作用以產生具有固定頻率之振動。 模擬分析方面,使用國家高速網路與計算中心(NCHC)所提供的ABAQUS6.4有限元素分析模擬軟體進行模擬,模擬聚二甲基矽氧高分子薄膜(Polydimethylsiloxane,PDMS)與永久磁鐵產生的位移。在螺旋線圈模擬方面,使用Ansoft軟體進行模擬分析,模擬螺旋線圈感應到的電壓值。 在製程方面,本研究採用壓克力板組合出流道,以PDMS作為振動薄膜,以磁鐵及螺旋線圈作為振動能轉換為位能之獵能元件。 在量測方面是以光纖位移計得到薄膜振幅,螺旋線圈輸出電壓是以示波器擷取卡來擷取,壓力感測器量測其腔體中流體壓力。並將量測結果與模擬相比較,證實此概念是可行的。
An electromagnetic energy harvester based on the von Kármán vortex street is developed. The energy harvester is actuated by pressure fluctuation generated by the vortex street behind a bluff body in a water flow channel. Finite element method was utilized to analyze the displacement of a flexible diaphragm and a permanent magnet. The induced voltage in the coil is calculated by Ansoft Maxwell 10.0. In the fabrication process, acrylic is used as the material for the fluidic channel, Polydimethylsiloxane (PDMS) as the material of vibration diaphragm, copper as the material of coil . The deflection of the diaphragm, output voltage of the solenoid, pressure in the pressure chamber are measured by a fiberoptic vibrometer, an oscilloscope and a pressure sensor, respectively. The experimental results are computed with the simulation. The design concept of the energy harvester is verified by the experimental results.
URI: http://hdl.handle.net/11455/4277
其他識別: U0005-3108201001013300
文章連結: http://www.airitilibrary.com/Publication/alDetailedMesh1?DocID=U0005-3108201001013300
Appears in Collections:精密工程研究所

文件中的檔案:

取得全文請前往華藝線上圖書館



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.