Please use this identifier to cite or link to this item:
標題: 以偏軸曝光方式製作非對稱微透鏡陣列之研究
Fabrication of Asymmetrical Microlens-Array by Off-axis Exposure Method
作者: 張博森
Chang, Po-sen
關鍵字: 偏軸
microlens array
出版社: 精密工程學系所
引用: [1] 行政院國家科學委員會,微機電系統技術與應用,民國92年7月。 [2] Z. D. Popovic, R. A. Sprague, and G. A. Neville Connell, “Technique for monolithic fabrication of microlens arrays,” Applied Optics, vol. 27, No.7, pp. 1281-1284, 1988. [3] D. L. MacFarlane, V. Narayan, J. A. Tatum, W. R. Cox, T. Chen, and D. J. Hayes, “Microjet Fabrication of Microlens Arrays,” IEEE Photonics Technology Letters, VOL. 6, NO. 9, PP 1112-1114, 1994. [4] M. R. Wang, and H. Su, “Laser direct-write gray-level mask and one-step etching for diffractive microlens fabrication,” Applied Optics, vol. 37, No.32, pp. 7568-7576, 1998. [5] H. Hocheng, and K. Y. Wang, “Analysis and fabrication of minifeature lamp lens by excimer laser micromachining,” Applied Optics, vol. 46, No.29, pp. 7184-7189, 2007. [6] C. C. A. Chen, C. M. Chen, and J. R. Chen, “Toolpath generation for diamond shaping of aspheric lens array,” Journal of Materials Processing Technology, pp. 194-199, 2007. [7] K. Naessens, H. Ottevaere, P. V. Daele, R. Baets, “Flexible fabrication of microlenses in polymer layers with excimer laser ablation,” Applied Surface Science, vol. 208-209, pp. 159-164, 2003. [8] Y. Sun and S. R. Forrest, “Organic light emitting devices with enhanced outcoupling via microlenses fabricated by imprint lithography,” Journal of Applied Physics, vol. 100, pp. 073106, 2006. [9] Q. Xu “Step Heat-Forming Photoresist Method for Expanding the N. A. Range of Refractive Microlens,” Acta Optica Sinica, vol. 18, pp. 1128, 1998. [10] S. Sinzinger, and J. Jahns, Microoptics, WILEY-VCH Verlag GmbH, Weinheim, pp. 85-103, 1999. [11] Z. D. Popovic, R. A. Sprague and G. A. N. Connell, “Technique for the monolithic fabrication of microlens arrays,” Applied Optics, vol. 27, pp. 1281-1284, 1988. [12] P. Nussbaum, R. Volkel, H. P. Herzig, M. Eisner, and S. Haselbeck, “Design, Fabrication and Testing of Microlens Arrays for Sensors and Microsystems,” Pure and Applied Optics, vol. 6, pp. 617-636, 1997. [13] 梁逸平,熔融法折射式微透鏡陣列之設計製造與檢測,中央大學光電科學研究所碩士論文,2001。 [14] W. R. Cox, T. Chen, and D. Hayes, “Micro-optics fabrication by ink-jet printing,” Optics & Photonics News, vol. 12, pp. 32-35, 2001. [15] C. S. Lee, and C.H. Han, “A novel refractive silicon microlens array using bulk micromachining technology,” Sensors and Actuators, vol. 88, pp.87-90, 2001.
摘要: 本研究為探討如何製作一具特定傾斜角度之非對稱微透鏡陣列並應用於光訊號處理系統,其做法為先使用兩次曝光微影來製作一具有偏軸兩層階梯塔狀結構,再搭配熱熔法製作出非對稱微透鏡陣列。實驗中先使用兩組底徑光罩分別為500μm與400μm之圓形圖案光罩進行曝光並顯影,製作出一層光阻柱,再以底徑光罩五分之一、四分之一、三分之一、二分之一之小圓光罩,兩圓圓心分別偏移20%、40%、60%、80%、100%做二次曝光並顯影,便可獲得具有偏軸兩層塔狀結構,以熱熔製程即完成非對稱微透鏡陣列。此目的為探討不同的第二層小圓直徑大小及不同偏移程度對非對稱微透鏡陣列有何影響。本研究透過該方法適當的控制第二層塔狀結構之大小,與上下兩層圓心偏移量可製作出傾斜角度達81°的非對稱微透鏡陣列。
The manufacturing method uses two lithography process to produce an off-step structure in photoresist. Then the photoresist structure can be produced to the asymmetric microlens array by thermal reflow. In the experiments, two sets of photomask, including 500 and 400μm in diameter were uses to produce the base layer. The patterns on the second layer were designed to one-fifth, one-fourth, one-third, and half size of the base diameter. Two layers were off-sef by 20%, 40%, 60%, 80%, and 100% to exposure and development. There were resulted in the off-axis two layer structures, and completed to asymmetric microlens array by thermal reflow . the objective was to investigate different patterns on second layer and different off-set affect on the asymmetric microlens array, by using proper parameters related to the pattern size and offset distance between two layers. The highest inclination angle 81° asymmetric microlens can be produced.
其他識別: U0005-2208201214272600
Appears in Collections:精密工程研究所



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.