Please use this identifier to cite or link to this item:
標題: 利用擴散微影法探討微透鏡外形成型之研究
Research of Shaped-Controlled Microlens Array by Diffuser Lithography Process
作者: 張益宗
Zhang, Yi-Zong
關鍵字: 擴散微影法
diffuser lithography
出版社: 精密工程學系所
引用: [1] Z. D. Popovic, R. A. Sprague, and G. A. Neville Connell, “Technique for monolithic fabrication of microlens arrays,” Applied Optics, vol. 27, pp.1281- 1284, 1988. [2] N. F. Borrelli, D. L. Morse, R. H. Bellman, and W. L. Morgan, “Photolytic technique for producing microlenses in photosensitive glass,” Applied Optics,vol. 24, pp. 2520-2525, 1985. [3] M. R. Wang and H. Su, “Laser direct-write gray-level mask and one-step etching for diffractive microlens fabrication,” Applied Optics, vol. 37, pp. 7568-7576, 1998. [4] 李明洪,氮化鎵高數值孔徑微透鏡之設計、製作與特性分析,國立中央大 學物理研究所論文,2001。 [5] D. L. MacFarlane, V. Narayan, J. A. Tatum, W. R. Cox, T. Chen, and D. J. Hayes, “Microjet fabrication of microlens arrays,” IEEE Photonics Technology Letters, vol. 6, pp. 1112-1114, 1994. [6] O. Karthaus and Y. Kiyono, “Reversible shape change of polymer microdroplets in a two-dimensional array,” Japanese Journal of Applied Physics, vol. 45, pp. 588- 590, 2006. [7] C. S. Lee, C. H. Han, “A novel refractive silicon microlens array using bulk micromachining technology,” Sensors and Actuators A, vol.88, pp. 87-90, 2001. [8] S. Chang and J. B. Yoon, “Shape-controlled, high fill- factor microlens arrays fabricated by a 3D diffuser lithography and plastic replication method,” Optics Express, Vol. 12, pp. 6366-6371, 2004. [9] J. H. Lee, W. S. Choi, K. H. Lee and J. B. Yoon, “A simple and effective fabrication method for various 3D microstructures: backside 3D diffuser lithography,” Journal of Micromechanics and Microengineering, Vol. 18, No. 123015, 2008. [10] S. I. Chang and J. B. Yoon, “Microlens array diffuser for a light-emitting diode backlight system,” Optics Letters, Vol. 31, pp. 3016-3018, 2006. [11] D. H. Kim, J. H. Lee, H. S. Lee and J. B. Yoon, “A trans-scaled nanofabrication using 3D diffuser lithography, metal molding and nano-imprinting,” Journal of Micromechanics and Microengineering, Vol. 21, No. 045025, 2011. [12] H. D. Kim, G. W. Yoon, J. Yeon, J. H. Lee and J. B. Yoon, “Fabrication of a uniform microlens array over a large area using self-aligned diffuser lithography (SADL),” Journal of Micromechanics and Microengineering, No. 045002, 2012. [13] E.Hecht, OPTICS 4th, Addsion Wesley, 2002. [14] F. M. Grimaldi, Adnexis, Bernia, 1665. [15] 謝昇融,微型醫用鎳質霧化器製作技術研究,國立中興大學碩士論文, 2009。 [16] H. Tomozawa, Y. Saida, Y. Ikenoue, F. Murai, Y. Suzuki, T. Tawa, and Y. Ohta, J. Photopolym. Sci. Technol., Vol. 9, No. 4, pp. 707, 1996. [17] P. Nussbaumyx, R. V. Olkely, H. P. Herzigy, M. Eisnerz and S. Haselbeck, “Design, fabrication and testing of microlens arrays for sensors and microsystems,” Pure and Applied Optics, Vol. 6, pp. 617-636,1997. [18] W. Henke, R. Schwalm, M. Weiss , J. Pelka , “Diffraction effects in submicron contact or proximity printing”, Microelectronic Engineering, Vol. 2, pp. 73-89, 1990. [19] C. P. Lin, H. H. Yang and C. K. Chao, “A new microlens array fabrication method using UV proximity printing,” Journal of Micromechanics and Microengineering, Vol. 13, pp. 748-757, 2003. [20] J. M. Kang, M. K. Wei, H. Y. Lin, J. H. Lee, H. Y. Lin, J. H. Tsai, T. C. Wu, “Shape-controlled microlens arrays fabricated by diffuser lithography,” Microlectronic Engineering, pp. 1420-1423, 2010.
摘要: 本研究是利用擴散微影法去探討製作不同微透鏡之外形,而本研究分為兩個部分,第一個部分是利用擴散微影法去製作出不同外形及功能之微透鏡。第二個部分為探討圖案為圓形的正片光罩,其圓的直徑及間距對於微透鏡外形及鏡高的關係。在第一個部分中,首先利用TracePro光學模擬軟體,模擬光線經過擴散片及正片光罩後,在光阻表面所呈現的光強分佈。並針對模擬結果,進行擴散微影法實作的部分,成功製作出外形為圓、錐狀等外形之微結構。而在第二個部分中去探討圖案為圓形的正片光罩,其圓的直徑及間距對於微透鏡外形、鏡高的關係。並從中發現到當圓的直徑為25μm、間距為20μm,可以成功製作出徑高比約為1的高徑高比微透鏡與其陣列。
This thesis is to study the shape-controlled microlenses fabricated by diffuser lithography. Two parts are included. First part is to produce different shapes and functions of microlens by diffuser lithography. Second part is to explore the relationship between the diameter, pitch of the circular masks and the shape, sag of microlenses. In the first part, the research is firstly to simulate the light-intensity distribution on the photoresists surface after the lights passed through the diffuser and the masks using the optical simulation software TracePro. The experiments were to proceed the implementation of diffuser lithography to successfully produce the circle-shaped and crater-shaped micro-structure based on the simulation result. Second part, the research is to explore the relationship between the diameter, pitch of the circular masks and the shape, sag of microlenses. It is found out that high sag microlens and its array can be successfully produced when the diameter of the circle is 25μm, and the pitch of the circle is 20μm.
其他識別: U0005-2606201315293800
Appears in Collections:精密工程研究所



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.