Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/4306
標題: 微奈米石墨片之高導熱特性量測與分析研究
Analysis and Measurement of High Thermal Conductivity of Micro/Nano Graphite Sheets
作者: 黃襄
Huang, Hsiang
關鍵字: 導熱材料
thermal conductive materials
熱傳導量測
人造石墨片
天然石墨片
thermal conductivity measurement
artificial graphite sheet
natural graphite sheet
出版社: 精密工程學系所
引用: [1] P. G. Klemens and D. F. Pedraza, “Thermal conductivity of graphite in the basal plane,” Carbon, vol. 32, no. 4, pp. 735-741, 1994. [2] S. Zhou , S. Chiang , J. Xu , H. Du , B. Li ,C. Xu , and F. Kang ,” Modeling the in-plane thermal conductivity of a graphite/polymer composite sheet with a very high content of natural flake graphite,” Carbon, vol. 50, no. 14, pp. 5052–5061, 2012. [3] W. J. Parker, R. J. Jenkins, C. P. Butler, and G. L. Abbott, ” Flash method of determining thermal diffusivity, heat capacity, and thermal conductivity,” Journal of Applied Science, vol. 32, no. 9, pp. 1679-1684, 1961. [4] N. C. Gallego, D. D. Edie , B. Nysten, J. P. Issi, J. W. Treleaven, and G. V. Deshpande, “The thermal conductivity of ribbon-shaped carbon fibers,” Carbon, Vol. 38, no. 7, pp. 1003-1010, 2000. [5] A.J. Angstrom, Ann. Phys. Chemie, vol.144, no. 513, 1861. [6] H. Nagano, H. Kato, A. Ohnishi, and Y. Nagasaka,” Measurement of the thermal diffusivity of an anisotropic graphite sheet using a laser-heating AC calorimetric method,” International journal of thermophysics, vol. 22, no. 1, pp. 301-312, 2001. [7] D. P. Bentz, “Transient plane source measurements of the thermal properties of hydrating cement pastes,” Journal of Materials and Structures, vol. 40, no. 10, pp. 1073-1080, 2007. [8] A. A. Balandin, S. Ghosh, W. Bao, I. Calizo, D. Teweldebrhan, F. Miao, and C. N. Lau, “Superior thermal conductivity of single-layer graphene,” Nano Letters, vol. 8, no. 3, pp. 902-907, 2008. [9] S. Ghosh, I. Calizo, D. Teweldebrhan, E. P. Pokatilov, D. L. Nika, A. A. Balandin, W. Bao, F. Miao, and C. N. Lau ,” Extremely high thermal conductivity of graphene: Prospects for thermalmanagement applications in nanoelectronic circuits,” Applied Physics Letters, vol. 92, no. 15, pp. 151911, 2008. [10] J.U. Lee, D. Yoon, H. Kim, S. W. Lee, and H. Cheong, "Thermal conductivity of suspended pristine graphene measured by Raman spectroscopy." Physical Review B, vol. 83, no. 8, pp. 081419, 2011. [11] D. L. Nika, E. P. Pokatilov, A. S. Askerov, and A. A. Balandin, “Phonon thermal conduction in graphene: Role of Umklapp and edge roughness scattering,” Physical Review B, vol. 79, no. 15, pp. 155413, 2009. [12] D. L. Nika, S. Ghosh, E. P. Pokatilov, and A. A. Balandin, “Lattice thermal conductivity of graphene flakes: Comparisonwith bulk graphite,” Applied Physics Letters, vol. 94, no. 20, pp. 203103, 2009. [13] W. J. Evans, L. Hu, and P. Keblinski, “Thermal conductivity of graphene ribbons from equilibrium molecular dynamics: Effect of ribbon width, edge roughness, and hydrogen termination,” Applied Physics Letters, vol. 96, no. 20, pp. 203112, 2010. [14] W. Jang, Z. Chen, W. Bao, C. N. Lau, and C. Dames, “Thickness-dependent thermal conductivity of encased graphene and ultrathin graphite,” Nano letters, vol. 10, no. 10, pp. 3909-3913, 2010. [15] A. A. Balandin, "Thermal properties of graphene and nanostructured carbon materials." Nature materials, vol. 10, no. 8, pp. 569-581, 2011. [16] A. Alofi and G. P. Srivastava, “Phonon conductivity in graphene,” Journal of Applied Physics, vol. 112, no. 1, pp. 013517-013517, 2012. [17] S. Chen, Q. Wu, C. Mishra, J. Kang, H. Zhan, K. Cho, W. Cai, A. A. Balandin, and R. S. Ruoff, “Thermal conductivity of isotopically modified graphene,” Nature Materials, vol. 11, no. 3, pp. 203-207, 2012. [18] 瑞領科技股份有限公司,參考網頁:http://www.longwin.com/big5/product/9514.html. [19] F. Stern, M. Muste, M. L. Beninati, and W. E. Eichinger, ” Summary of experimental uncertainty assessment methodology with example,” IIHR Technical Report, no. 406, 1999. [20] 陳到達,熱分析,渤海堂文化事業有限公司,1992。 [21] J. P. Holman, Heat transfer, McGrawHill, 2002.
摘要: 本研究在探討人造以及不同厚度的天然高導熱石墨片之熱傳特性。實驗部分以Angstrom’s method為基礎,架設熱擴散係數量測設備。測得於室溫環境下,人造石墨片之熱擴散係數約為(8.24±0.93) x 10 -4 m2/s,而天然石墨片測得值約介於(2.04±0.26) x 10 -4至(2.67±0.17) x 10 -4 m2/s之間,且經實驗誤差分析後,發現以此方法建立之設備,量測誤差約為±10%左右。以電子磅秤進行重量之量測而得到密度,以及示差掃描熱量分析儀(DSC)進行比熱量測之後,綜合密度及比熱即可得樣本之熱傳導係數。結構分析部分,以光學顯微鏡(OM)、掃描式電子顯微鏡(SEM)以及穿透式電子顯微鏡(TEM),進行表面結構、分子結構之觀測分析。綜合本研究實驗結果以及微奈米觀測分析出,人造石墨片之碳結構能有較好之晶格特性以及石墨純度,因此相較天然石墨片能有較高的熱擴散係數。
This paper aims to investigate thermal conductivity properties originated between artificial and different thicknesses natural high thermal conductivity graphite sheets. The Angstrom’s method was used to establish a thermal diffusivity measurement instrument. The experimental results showed the room temperature thermal diffusivity of artificial graphite sheet is about (8.24±0.93) x 10^-4 m^2/s, and the values of natural graphite sheets are in the range (2.04±0.26) x 10^-4 to (2.67±0.17) x 10^-4 m^2/s. The experimental results also showed the error within ±10% by the uncertainty analysis. The graphite sheet densities and specific heat were measured by an electronic balance and differential scanning calorimetry (DSC). Combining the thermal diffisivity, density, and specific heat, the thermal conductivity can be obtained. Optical microscope (OM), scanning electron microscopy (SEM) and transmission electron microscopy (TEM) were used to observe and analyze the graphite sheets surface and atomic structures. The experimental result and micro/nano observation showed that carbon structures of artificial graphite sheets are well arranged in lattice and high purity. That results in a better thermal conductivity than natural graphite sheets.
URI: http://hdl.handle.net/11455/4306
其他識別: U0005-0907201314094400
文章連結: http://www.airitilibrary.com/Publication/alDetailedMesh1?DocID=U0005-0907201314094400
Appears in Collections:精密工程研究所

文件中的檔案:

取得全文請前往華藝線上圖書館



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.