Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/4308
標題: 微拉伸試驗探討次微米尺度銅薄膜疲勞潛變與金相分析
Fatigue life and damage analysis of submicron scale copper thin film
作者: 孫培剛
Sun, Pei-Kang
關鍵字: 微拉伸
microtensile
銅薄膜
疲勞
金相分析
copper thin film
fatigue
damage analysis
出版社: 精密工程學系所
引用: [1] 電子工程專輯. (2007). Wii刮起旋風 MEMS應用成為消費市場新焦點.取自: http://www.eettaiwan.com/STATIC/SITE/ONLINE_TOPIC_20070105.HTM#PART1 [2] 張政仁, 游義地, "微機電技術於航太科技之應用," 南臺灣資訊科技與應用研討會, 2007. [3] 李孝文, 溫士逸, 石志聰, 吳文益, 郭武政, 王應慶, 廖浚男, 翁瑞坪, "光學微機電技術在光通訊之應用-(Part Ⅰ):光開關," 光學工程, pp. 56-70, 2002. [4] 方維倫, 孫志銘, 王傳蔚,蔡明翰, "CMOS MEMS微感測器之設計、製造、與整合," 產學合作暨成果發表專刊. [5] DNS數位˙網路˙社群. (2010). MEMS應用多元化,剖析MEMS技術與應用未來趨勢研討會. 取自: http://www.dns.com.tw/?p=500 [6] 台灣區電機電子工業同業公會電子報. (2009). iSuppli:微機電系統應用廣 經濟頹勢何懼 後勢仍看俏. 取自: http://www.teema.org.tw/epaper/20090218/industrial008.html [7] MoneyDJ理財網-理財、財經綜合資訊網. (2007). 摩爾定律.取自: http://www.moneydj.com/KMDJ/Wiki/WikiViewer.aspx?KeyID=7d2d3d75-c894-45aa-b610-a8795203e3f1 [8] R. P.Vinci and S. P. Baker, "Mechanical Properties in Small Dimensions," MRS BULLETIN, 2002. [9] E. O. HALL, "The Deformation and Ageing of Mild Steel: III Discussion of Results," Proceedings of the Physical Society, 1951. [10] 張為傑, "微機電之晶片接合技術與應用," 光學工程, pp. 39-43, 2000. [11] E. Times. (2010). Copper nanowires enable flexible displays, solar panels.取自: http://eetimes.com/electronics-news/4199910/Copper-nanowires-enable-flexible-displays-solar-panels [12] M. Quirk and J. Serda, semiconductor manufacturing technology: Prentice Hall, 2001. [13] 白木靖寬, 吉田貞史(著), 王建義(譯), 薄膜工程學:薄膜工學, 1st ed. 台北市: 全華, 2004. [14] 羅吉宗, 薄膜科技與應用, 1st ed. 台北市: 全華, 2004. [15] 韋孟育, 材料實驗方法-金相分析技術, 2nd ed. 臺北巿: 福華, 1992. [16] 劉國雄, 林樹均, 李勝隆, 鄭晃忠, 葉均蔚, "機械性質及測試," 工程材料科學, 1996. [17] D. R. Askeland and P. P. Phule, the science and engineering of materials, 5th ed., 2006. [18] 劉國雄, 林樹均, 李勝隆, 鄭晃忠, and 葉均蔚, 工程材料科學: 全華, 1996. [19] 材料力學問題集 91~95.取自: http://sunrise.hk.edu.tw/~hmliu/1-lct/material/q_and_a/qanda91_95.htm [20] R. Abbaschian, L. Abbaschian, and R. E. Reed-Hill, Physical Metallurgy Principles, 4th ed.: Cengage Learning, 2008. [21] 陸志鴻, 金屬材料試驗法: 正中, 1979. [22] H.-K. Liu, B. J. Lee, and P.-P. Liu, "Low cycle fatigue of single crystal silicon thin films," Sensors and Actuators A, pp. 257-265, 2007. [23] C. L. Muhlstein, S. B. Brown, and R. O. Ritchie, "High-cycle fatigue and durability of polycrystalline silicon thin films in ambient air," sensors and Actuators A, pp. 177-188, 2001. [24] J.-H. Park, J.-H. An, Y.-J. Kim, Y.-H. Huh, and H.-J. Lee, "Tensile and high cycle fatigue test of copper thin film," 2008. [25] D. Wang, C. A. Volkert, and O. Kraft, "Effect of length scale on fatigue life and damage formation in thin Cu films," Materials Science and Engineering: A, vol. 493, pp. 267-273, 2008. [26] C.-Y. Kim, J.-H. Song, and D.-Y. Lee, "Development of a fatigue testing system for thin films," International Journal of Fatigue, pp. 736-742, 2008. [27] W. D. Nix, Mechanical Properties of Thin Films, 2005. [28] G. P. Zhang, C. A. Volkert, R. Schwaiger, P. Wellner, E. Arzt, and O. Kraft, "Length-scale-controlled fatigue mechanisms in thin copper films," acta materialia, vol. 54, pp. 3127-3139, 2006. [29] J. Y. Zhang, X. Zhang, G. Liu, R. H. Wang, G. J. Zhang, and J. Sun, "Length scale dependent yield strength and fatigue behavior of nanocrystalline Cu thin films," Materials Science and Engineering: A, vol. 528, pp. 7774-7780, 2011. [30] S. Y. Chang, T. K. Chang, and H. L. Hsiao, "Grain Size Effect on Nanomechanical Properties and Deformation Behavior of Copper," Journal of Materials Science and Engineering, vol. 38, pp. 162-168, 2006. [31] G. P. Zhang, C. A. Volkert, R. Schwaiger, E. Arzt, and O. Kraft, "Damage behavior of 200-nm thin copper films under cyclic loading," Journal of Materials Research, vol. 20, pp. 201-207, 2005. [32] O. Kraft, P. Wellner, M. Hommel, R. Schwaiger, and E. Arzt, "Fatigue behavior of polycrystalline thin copper films," Zeitschrift fur Metallkunde, 2002. [33] M.-T. Lin, C.-J. Tong, and C.-H. Chiang, "Design and development of novel electroplating spring frame MEMS structure specimens for the micro-tensile testing of thin film materials," 2006. [34] M. A. Haque and M. T. A. Saif, "In-situ tensile testing of nano-scale specimens in SEM and TEM," Experimental Mechanics, pp. 123-128, 2002. [35] D. T. Read, "Tension-tension fatigue of copper thin films," pp. 203-209, 1998. [36] R. Schwaiger, G. Dehm, and O. Kraft, "Cyclic deformation of polycrystalline Cu films," Philosophical Magazine, pp. 693-710, 2002. [37] N. Lu, Z. Suo, and J. J. Vlassak, "The effect of film thickness on the failure strain of polymer-supported metal films," Acta Materialia, pp. 1679-1687, 2010. [38] Y. Hwangbo and J.-H. Song, "Fatigue life and plastic deformation behavior of electrodeposited copper thin films," Materials Science and Engineering A, pp. 2222-2232, 2010. [39] M. Legros, B. R. Elliott, M. N. Rittner, J. R.Weertman, and K. J. Hemker, "Microsample tensile testing of nanocrystalline metals," Philosophical Magazine, pp. 1017-1026, 2000. [40] 許凱翔, "以微拉伸試驗銅薄膜材料之機械疲勞行為," 碩士學位論文, 國立中興大學精密工程研究所, 2007.
摘要: 本論文探討三種不同厚度之次微米尺度銅薄膜在水平式微拉伸機台探討疲勞與金相結構的變化,首先必須先量測出不同厚度之薄膜的楊氏模數、降伏強度、最大應力…等機械性質,再來即進行疲勞的量測。先是在相同平均應力、不同振幅下進行疲勞試驗,先量測出其完整週期數及其金相結構,再由上一條件所測得之相同平均應力及相同振幅下,週期區間內之不同周期之疲勞試驗後之金相分析,除可藉此預測銅薄膜之完整疲勞壽命外,也可探究經疲勞試驗後及疲勞試驗之週期區間中,銅薄膜的微結構變化。 實驗結果顯示,在相同平均應力(300MPa)下,不論是在較大之振幅(250MPa)下或是較小的振幅(100MPa)下,疲勞週期數皆為銅薄膜厚度300nm大於700nm大於500nm。金相分析則是,較薄之300nm厚的銅薄膜經疲勞試驗後,會在其截面看到孔洞的情形,而500nm和較厚的700nm則無觀察到此現象。
URI: http://hdl.handle.net/11455/4308
其他識別: U0005-1807201212012600
文章連結: http://www.airitilibrary.com/Publication/alDetailedMesh1?DocID=U0005-1807201212012600
Appears in Collections:精密工程研究所

文件中的檔案:

取得全文請前往華藝線上圖書館



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.