Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/4313
DC FieldValueLanguage
dc.contributor楊錫杭zh_TW
dc.contributor.author胡家睿zh_TW
dc.contributor.authorHu, Chia-Juien_US
dc.contributor.other精密工程學系所zh_TW
dc.date2012en_US
dc.date.accessioned2014-06-06T06:27:32Z-
dc.date.available2014-06-06T06:27:32Z-
dc.identifierU0005-0507201216031200en_US
dc.identifier.citation[1] B. Greiner, W. A. Ribi, E. J. Warrant, Cell Tissue Res. 316,377 (2004). [2] M. F. Land, “Visual acuity in insects,” Annu. Rev. Entomol., vol. 42, pp. 147-177, 1997. [3] J.W. Duparre and F.C. Wippermann, “Topical review: Micro-optical artificial compound eyes,” Bioinspiration and Biomimetics, vol. 1, pp. R1-R6, 2006. [4] J. Tanida, T. Kumagai, K. Yamada, S. Miyatake, K. Ishida, T. Morimoto, N. Kondou, D. Miyazaki and Y. Ichioka, “Thin observation module by bound optics (TOMBO): concept and experimental verification,” Applied Optics, vol. 40, pp. 1806-1813, 2001. [5] R. Horisaki, S. Irie, Y. Ogura and J. Tanida, “There-dimensional information acquisition using a compound imaging system,“ Optical review, vol. 14, No. 5, pp.347-350, 2007. [6] S. Sinzinger and J. Jahns, Microoptics, WILEY-VCH Verlag GmbH, Weinheim, pp. 85-103, 1999. [7] Z. D. Popovic, R. A. Sprague and G. A. N. Connell, “Technique for the monolithic fabrication of microlens arrays,” Applied Optics, vol. 27, pp. 1281-1284, 1988. [8] Ph Nussbaum, R Volkel, H P Herzig, M Eisner and S Haselbeck, “Design, fabrication and testing of microlens arrays for sensors and microsystems,” Pure Appl. Opt., vol. 6, pp. 617-636, 1997. [9] W. R. Cox, T. Chen and D. Hayes, “Micro-optics fabrication by ink-jet printing,” Optics & Photonics News, vol. 12, pp. 32-35, 2001. [10] C. S. Lee and C.H. Han, “A novel refractive silicon microlens array using bulk micromachining technology,” Sensors and Actuators A, vol. 88, pp.87-90, 2001. [11] M. R. Wang and H. Su, “Laser direct-write gray-level mask and one-step etching for diffractive microlens fabrication,” IEEE Photonics Technology Letters, pp. 7568-7576, 1998. [12] C. F. Tsou and C. Lin, “A new method for microlens fabrication by a heating encapsulated air process,” IEEE Photonics Technology Letters, vol. 18, pp. 2490-2492, 2006. [13] C. F. Tsou and C. H. Lin, “An improved process for fabricating microlens array with high fill factor and controllable configuration,” Journal of Microelectromechanical Systems, vol. 17, No.4, pp. 1047-1057, 2008. [14] T. R. Jay and M. B. Sterm, “Step heat-forming photoresist method,” Physical Chemistry Of Surfaces, Opt. Eng., pp. 3547-3552, 1994. [15] T. Okamoto, M. Mori, T. Karasawa, S. Hayakawa, I. Seo, and H. Sato, “Ultraviolet-cured polymer microlens arrays,” Physical Chemistry of Surfaces, Appl. Opt. vol. 38, pp. 2991-2996, 1999. [16] 張紅鑫、盧振武、王瑞庭、李風有、劉華、孫強,曲面複眼成項系統的研究,光學精密工程,第14卷,第3期,2006年6月。 [17] B. G. Park, K. Choi, C. Jin and H. S. Lee, “Micro lens-on-lens array,” The Royal Society of Chemistry, pp.1751-1755, 2012. [18] D. Zhu, C. Li, X. Zeng and H. Jiang, “Hydrogel-actuated tunable-focus microlens arrays mimicking compound eyes,” IEEE Transducers, pp.2302-2305,2009. [19] J. Kim, K. H. Jeong and L. P. Lee, “Artificial ommatidia by self-aligned microlenses and waveguides,” Optics Letters., vol.30, pp. 5-7, 2005. [20] K. H. Jeong, J. Kim and L. P. Lee, “Biologically inspired artificial compound eyes,” Science , vol. 312, pp. 557-561, 2006. [21] J. Duparre, P. Dannberg, P. Schreiber, A. Brauer and A. Tunnermann, “Artificial apposition compound eye fabricated by micro-optics technology,” Applied Optics, vol. 43, pp. 4303-4310, 2004. [22] J. Duparre, P. Dannberg, P. Schreiber, A. Brauer and A. Tunnermann, “Thin compound-eye camera,” Applied Optics, vol. 44, pp. 2949-2956, 2005. [23] J. Duparre, P. Schreiber and R. Volkel, “Theoretical analysis of an artificial superposition compound eye for application in ultra flat digital image acquisition devices,” Proc. of SPIE, vol.5249, pp. 408-418, 2004. [24] E. Hecht, Optics 4th, Addison Wesley, Adelphi University, 2002. [25] 宋慧琴,眼應用光學基礎,新文京開發出版股份有限公司,2007。 [26] 耿繼業、何建娃,幾何光學,全華科技圖書股份有限公司,2001。 [27] 劉俊宏,微透鏡仿生複眼影像擷取系統之研究,國立中興大學碩士論文,2010。 [28] 莊達人,VLSI製造技術,高立圖書有限公司,2000。 [29] 謝昇融,微型醫用鎳質霧化器製作技術研究,國立中興大學碩士論文,2009。en_US
dc.identifier.urihttp://hdl.handle.net/11455/4313-
dc.description.abstract本研究的目標為開發曲面仿生複眼微透鏡陣列。以微影技術與電鑄技術做出平面透鏡陣列模仁,並以彈性光學材料PDMS(Polydimethylsiloxane)進行翻模。接著製作上方半球形開孔之PDMS腔體,將微透鏡陣列薄膜倒置黏貼於開孔上方,抽氣使其腔體內外壓力不同,讓平面微透鏡陣列變形為曲面微透鏡陣列。將曲面微透鏡陣列與CMOS影像感測器做結合,完成仿生複眼影像擷取裝置,達成系統之視角約為112゜。本研究成功製作複眼曲面微透鏡陣列,具有製程簡易、模仁可重複使用、成型快速等優點。zh_TW
dc.description.abstractThe research goal is to develop a bionic compound eye with curved microlens array. In this study, lithography and electroforming technology were used to fabricate planar microlens array mold. The PDMS (Polydimethylsiloxane) was the material for replicating planner microlens array membrane. To make a top hemispheres opening chamber which was replicated from a acrylic mold, then the planar microlens array membrane was placed on the chamber. The syringe was used to draw the air which is in the chamber. The planer microlens array membrane was deformed by pressure difference and it became the curved microlens array. It was combined with the CMOS image sensor to capture images. The achieved FOV of the system is 112�. This study successfully fabricated the apposition microlens array, which has the advantages of simple process, the mold can be reused for rapid forming.en_US
dc.description.tableofcontents摘要 i Abstract ii 目錄 iii 圖目次 v 表目次 viii 第一章 緒論 1 1.1 前言 1 1.2 研究動機與目的 2 1.3 研究方法與目標 4 1.4 論文架構 4 第二章 文獻回顧 5 2.1 微透鏡製程 5 2.1.1 熱熔法 5 2.1.2 微液滴法 6 2.1.3 灰階光罩法 7 2.1.4 空氣膨脹法 8 2.1.5 雷射直寫熱熔法 10 2.2 曲面複眼製程 11 2.2.1 雷射直寫法 11 2.2.2 壓力差法 12 2.2.3 水凝膠法 13 2.3 仿生人工複眼的結構 14 2.3.1 自對準與光波導式 14 2.3.2 折射式聚合物微透鏡式 15 2.4 人工複眼成像系統 15 2.4.1 TOMBO成像系統 16 2.4.2 APCO成像系統 17 2.4.3 CLEY成像系統 18 2.5 結語 19 第三章 基本理論 20 3.1 幾何光學的基本定律 20 3.1.1 光的直線傳播定律 20 3.1.2 光的獨立傳播定律 20 3.1.3 反射定律 21 3.1.4 折射定律 21 3.2 基本成像概念 23 3.3 半球曲率半徑公式 23 3.4 薄透鏡成像公式 24 3.5 厚透鏡成像公式 26 3.6 曲面複眼計算方式 26 第四章 實驗設計與製程規劃 28 4.1 微透鏡陣列設計 29 4.2 光阻微透鏡製程 32 4.2.1 黃光微影製程 32 4.2.1.1 光罩設計 33 4.2.1.2 基板清洗 35 4.2.1.3 光阻塗佈 35 4.2.1.4 軟烤(Softbake) 38 4.2.1.5 曝光(Exposure) 39 4.2.1.6 顯影(Development) 40 4.2.2 熱熔製程(Thermal reflow) 40 4.3 電鑄與翻模製程 42 4.3.1 鎳電鑄(Electroforming)製程 42 4.3.2 翻模製程 44 4.4 曲面複眼製程 45 4.4.1 半球開孔透明腔體製作 45 4.4.2 曲面微透鏡成形 47 4.5 結合CMOS感測元件擷取影像 48 第五章 實驗結果與討論 50 5.1 光學顯微鏡(OM)量測平面光阻微透鏡結構 50 5.2 3D共軛焦顯微鏡量測微透鏡結構 55 5.3 SEM觀察整體形貌 68 5.4 結合CMOS影像感測器擷取影像 68 5.5 視場角量測 70 5.6 填充率計算 71 5.7 實驗結果與討論 72 第六章 結論與未來展望 72 6.1 結論 73 6.2 未來展望 73 參考文獻 74 附錄A製程儀器設備 77 附錄B量測儀器設備 82zh_TW
dc.language.isozh_TWen_US
dc.publisher精密工程學系所zh_TW
dc.relation.urihttp://www.airitilibrary.com/Publication/alDetailedMesh1?DocID=U0005-0507201216031200en_US
dc.subject人工複眼zh_TW
dc.subjectartificial compound eyeen_US
dc.subject微透鏡陣列zh_TW
dc.subject微光機電系統zh_TW
dc.subject影像系統zh_TW
dc.subjectmicrolens arrayen_US
dc.subjectMOEMSen_US
dc.subjectimagery systemen_US
dc.title曲面微透鏡陣列仿生複眼影像擷取系統之研究zh_TW
dc.titleResearch of Curved Microlens Bionic Compound Eye for Imagery Capture Systemen_US
dc.typeThesis and Dissertationzh_TW
Appears in Collections:精密工程研究所
文件中的檔案:

取得全文請前往華藝線上圖書館



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.