Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/4321
標題: 葡萄糖氧化酵素燃料電池之循環系統研究
The Circulatory System Study for Glucose Oxidase Enzymatic Fuel Cell
作者: 方婉婷
Fang, Wan-Ting
關鍵字: 葡萄糖氧化酵素
glucose oxidase
共價鍵結法
電化學分析
循環式系統
covalent bonding method
electrochemical analysis
circulatory system
出版社: 精密工程學系所
引用: [1]R. Scott, H.- C. Lau, P. Atanassov, D. Shelley . J.- M. Cooney, “ Hybrid biofuel cell: microbial fuel cell with an enzymatic air-breathing cathode, ” ACS Catalysis, vol. 1, no.9, pp. 994-997, 2011. [2]S.- C. Barton, J. Gallaway, P. Atanassov, “ Enzymatic biofuel cells for implantable and microscale devices, ” ChemInform, vol. 35, no. 51, pp.4867 -4886, 2004. [3]S. Rubenwolf, S. Sane , L. Hussein, J. Kestel, F. Stetten, G. Urban, M. Krueger, R. Zengerle, S. Kerzenmacher, “ Prolongation of electrode lifetime in biofuel cells by periodic enzyme renewal, ”Applied Microbiology and Biotechnology, vol.96, issue 3, pp.841- 849, 2012. [4]H.- J. Kim, H.- S. Park, M.-S. Hyun, I.- S. Chang, M.- Kim and B.-H. Kim, “A mediator-less microbial fuel cell using a metal reducing bacterium, Shewanella putrefaciens,” Enzyme and Microbial Technology, vol. 30, pp. 145-152, 2002 [5]B.- E. Logan, B. Hamelers, R. Rozendal, U. Schrder, J. Keller, S. Freguia, P.Aelterman, W. Verstraete, and K. Rabaey, “Microbial fuel cells: methodology and technology,” Enzyme and Microbial Technology, vol. 40, pp. 5181-5192, 2006. [6]B.- J. Lee , K.- H. Ryu,“ Feature extraction from protein sequences and classification of enzyme function, ” BioMedical Engineering and Informatics, vol.1, no.1, pp.138-142, 2008. [7]H.- G. Reginald , M.- G. Charles, Biochemistry , Saunders College Publishing, 1999. [8]M.- F. Chaplin, C. Bucke, Enzyme Technology, Press syndicate of the university of cambridge, New York, 1990. [9]L.- R. Ludikhuyze, I.- V. Broeck, C.- A. Weemase, C.- H. Herremans, J.- F. Van , M.- E. Hendricks, P.- P. Tobback, “Kinetics for isobaric-isothermal inactivation of Bacillus subtilis a-amylase, ” Biotechnol. Prog. , vol.13, no.5, pp. 532-538, 1997. [10]陳國誠,微生物酵素工程學,藝軒圖書出版社,1999 年3月 再版。 [11]李文龍,澱粉葡萄糖化酵素固定在幾丁聚醣之研究,國立雲林科技大學, 2003. [12]J. Hecht, H.- M. Kalisz, J. Hendle , R.- D. Schmid, D. Schomburg,“Crystal-structure of glucose-oxidase from aspergillus-niger refined at 2.3 angstrom resolution, ” Journalof Molecular Biology, vol.229, no.1, pp. 153-172, 1993. [13]A. Karmali, and P. Oliveira ,“ Glucose 1- and 2-oxidases from fungal strains: isolation and production of monoclonal antibodies, ” Journal of Biotechnology, vol.69, no.2, pp.151-162, 1999. [14]http://commons.wikimedia.org/wiki/File:Glucose_Oxidase.p ng [15]J. Raba, H.- A. Mottola,“Glucose-oxidase as an analytical reagent. critical reviews in analytical chemistry, ” 1995. vol.25, no.1, pp. 1-42. [16]陳光澤,位向性固定化葡萄糖氧化酶之新方法,國立中央大學,2010。 [17]A.- K. Shukla, P. Suresh, S. Berchmans, A. Rajendran,“ Biologiacl fuel cells and their applications ,” Indian Institute of Science, vol.87, no.4, pp.455-468, 2004. [18]U. Bilitewski, “Protein-sensing assay formats and devices,” Molecular Electronics and Analytical Chemistry, vol.568, no.1-2, pp.232-247, 2006. [19]F. Rusmini, Z.-Y. Zhong, J. Feijen, “Protein immobilization strategies for protein Biochips, ”Biomacromolecules, vol. 8, no. 6, pp. 1775-1789 , 2007. [20]M. Cretich, F. Damin, G . Pirri, M. Chiari, “ Protein and peptide arrays: recent trends and new directions,” Biomolecular Engineering, vol.23, no. 2-3, pp. 77-88, 2006. [21]陳國誠, “生物固定化技術與產業應用,” 茂昌圖書有限公司, 1990。 [22]鄭慈千, “固定化酵素生產果寡糖與半乳寡糖,” 生物工程學系(所), 大同大 學 台北市, 2005。 [23]S.- F. D''Souza, N. Agric , B. Division, “Immobilized enzymes in bioprocess,” Current Science, vol. 77, no. 1, pp. 69-79, 1999. [24]洪哲潁, “回應曲面實驗設計法在微生物酵素生產上之應用,” 化工專論, 1992。 [25]M. N. V. Ravi Kumar, “A review of chitin and chitosan applications,” Reactive and Functional Polymers, vol. 46, no. 1, pp. 1-27, 2000. [26]徐世昌, “生物性高分子「幾丁質及幾丁聚醣」之介紹與應用,” 化工資訊, vol. 2, pp. 36-45, 2001。 [27]趙恩中, “以酪胺酸酵素修飾幾丁聚醣 應用於化工程序之研究,” 化學工程 與材料工程研究所, 國立中央大學, 桃園縣, 2004。 [28]M.- H. Osman, A.- A. Shah, and F.- C. Walsh, “Recent progress and continuing challenges in bio-fuel cells. Part I: Enzymatic cells,” Biosensors and Bioelectronics, vol. 26, no. 7, pp. 3087-3102, 2011. [29]C. Fuentes-Albarran, A. Del Razo, K. Juarez et al., “Influence of NaCl, Na2SO4 and O2 on power generation from microbial fuel cells with non-catalyzed carbon electrodes and natural inocula,” Solar Energy, vol. 86, no. 4, pp. 1099-1107 ,2012. [30]SONY. "http://www.sony.com/index.php [31]S. -C. Wang, F. Yang, M. Silva, A. Zarow, “ Membrane- less and mediator-free enzymatic biofuel cell using carbon nanotube/porous silicon electrodes , ” Electrochemistry Communications, vol.11, no.1, pp. 34- 37, 2009. [32]S. Rengaraj, P. Kavanagh, D. Leech, “A comparison of redox polymer and enzyme co-immobilization on carbon electrodes to provide membrane-less Glucose / O2 enzymatic fuel cells with improved power output and stability , ” Biosensors and Bioelectronics, vol.30, no.1, pp. 294-299, 2011. [33]J. Shim, G.-Y. Kim, and S.-H. Moon, “ Covalent co- immobilization of glucose oxidase and ferrocenedicarboxylic acid for an enzymatic biofuel cell,” Journal of Electroanalytical Chemistry, vol. 653, no. 1–2, pp. 14-20, 2011. [34]H. Sakai, T. Nakagawa, Y. Tokita et al., “A high-power glucose/oxygen biofuel cell operating under quiescent conditions,” Energy & Environmental Science, vol. 2, no. 1, pp. 133-138, 2009. [35]R. Kukul, P. Hasal, T. Schultz , T. Schro‥der , K. Sundmacher, “ Can a fuel-cell stack and an enzyme electro-membrane reacter be combined into a multi- functional unit? ”vol.118, no.1-2, pp.104-112, 2006. [36]A. Zebda, C. Gondran, A. Le Goff et al., “Mediatorless high-power glucose biofuel cells based on compressed carbon nanotube-enzyme electrodes,” Nature Communication, vol. 2, pp. 370, 2011. [37]C. Chen, L. Wang, Y. Tan et al., “High-performance amperometric biosensors and biofuel cell based on chitosan-strengthened cast thin films of chemically synthesized catecholamine polymers with glucose oxidase effectively entrapped , ” Biosensors and Bioelectronics, vol. 26, no. 5, pp. 2311-2316, 2011. [38]黃暐翔,“葡萄糖氧化酵素型生物燃料電池之最佳化特性研究,國立中興大 學,”2012。 [39]Y. Huang, X. Qin, Z. Li, Y. Fu, C. Qin, F. Wu, Z. Su, M. Ma, Q. Xie, S. Yao,“ Fabrication of a chitosan/glucose oxidase-poly(anilineboronic acid)-Aunano/Au-plated Au electrode for biosensor and biofuel cell,” SciVerse ScienceDirect, vol.31, no.1, pp.357-362, 2012. [40]Y.- G. Yoon, W.- Y. Lee, T.- H. Yang, G.- G. Park, C.- S. Kim, “Current distribution in a single cell of PEMFC,” Journal of Power Sources, vol. 118,no.1, pp. 193–199, 2003. [41]趙文愷,“添加親水性γ-氧化鋁於陽極觸媒層中改善PEMFC 的效能,”碩士論 文,國立中興大學材料工程研究所,2007。 [42]C. Fuentes-Albarran, A. Del Razo, K. Juarez et al., “Influence of NaCl, Na2SO4 and O2 on power generation from microbial fuel cells with non-catalyzed carbon electrodes and natural inocula,” Solar Energy, vol. 86, no. 4, pp. 1099-1107, 2012. [43]I. Ivanov, T. Vidaković-Koch, and K. Sundmacher, “Direct hybrid glucose–oxygen enzymatic fuel cell based on tetrathiafulvalene–tetracyanoquinodimethane charge transfer complex as anodic mediator,” Journal of Power Sources, vol. 196, no. 22, pp. 9260-9269, 2011. [44]J. Min, A.- J. Baeumner ,“ Characterization and optimization of interdigitated ultramicroelectrode arrays as electrochemical biosensor transducers, ”. Electroanalysis ,vol.16, no.9 , pp.724-729.2004. [45]C. Kuo, H. Kuo, Y. -C. Liu, C. -M. Chang, J. -H. Chen, C. Chang, C. Shieh, “ Optimum conditions for lipase immobilization on chitosan-coated Fe3O4 nanoparticles” Carbohydrate Polymers,vol.87, no .4. pp.2538-2545,2011. [46]T.- C. Hung, R. Giridhar, S.- H. Chiou, W.- T. Wu , “ Binary immobilization of candida rugosa lipase on chitosan , ”Journal of Molecular Catalysis ,vol.26, no.1 pp.69-78, 2003.
摘要: 本研究的目標是將酵素的活性提升再藉由循環注入電解液方式達到高功率密度,進行酵素電池系統的電性分析之研究,陽極為酵素電極以葡萄糖氧化酵素作為觸媒,結合交聯法和共價鍵結法的方式將酵素固定在有幾丁聚醣單體的碳布上面,增對不同交聯劑和不同氯化鈉濃度的電解液來做電化學分析以及酵素電極FT-IR和SEM分析,電化學分析最主要是用來模擬陽極上的氧化還原反應,利用不同的電位差來驅動反應進行,不同的電位差所對應的反應電流會有所不同,也會有特殊的峰值,而峰值可用公式計算出電化學反應面積,可以初步判斷酵素的催化使用效率,再進行加工設計模組並組裝成單電池進行電性分析,藉由單電池的發電量來應證本研究酵素電極的電化學分析。當陽極溶液之葡萄量為0.1M、氯化鈉濃度0.15M時,活性41.90 U/g時有較佳的發電特性,搭配循環系統可以達到其最大發電量為5.858 mW/cm2。
This study presents a high-performance biofuel cell based on the covalent immobilizing of glucose oxidase (GOx) on chitosan coated carbon cloth as an anodic catalyst. The chitosan was coated by the coagulation of an aqueous solution of chitosan on the carbon cloth surface. The N-(3-dimethylaminopropyl)-N''-ethylcarbodiimide (EDC) and N-hydroxysuccinimide (NHS) was used as coupling agents for GOx immobilization. SEM photos for the observation of surface morphology of the electrode were inspected and discussed. FT-IR and UV-vis spectrum indicated that the immobilization of the respective enzyme onto the electrodes was successfully achieved by covalent and cross-linking method. Measurement of different concentration of sodium chloride by electrochemical. The results showed that 0.15M sodium chloride concentration of the best redox peaks and the current sensitivity. The power-voltage curve indicated that the best operation could be achieved at 0.42 V with a maximum power density of approximate 5.858 mW/cm2.
URI: http://hdl.handle.net/11455/4321
其他識別: U0005-0307201312005300
文章連結: http://www.airitilibrary.com/Publication/alDetailedMesh1?DocID=U0005-0307201312005300
Appears in Collections:精密工程研究所

文件中的檔案:

取得全文請前往華藝線上圖書館



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.