Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/4324
標題: 設計微拉力試驗測試方法探討應力條件對鎳-錫介金屬薄膜生成應用
Design Micromechanical Testing method for the stress Effect study on the Formation of Ni/Sn Intermetallic Thin Films
作者: 黃樟澤
Huang, Chang-Che
關鍵字: 鎳-錫介金屬化合物
Copper-tin intermetallic formation
銲料擴散
微機械測試
電腦伺服材料試驗機
恆溫箱
solder diffusion
micromechanical test
出版社: 精密工程學系所
引用: 1. 陳信文 , 陳立軒 , 林永森 , 陳志銘 , ”電子構裝技術與材料” ,高立圖書有限公司(2005)。 2. E. J. Rymaszewski, R. R. Tummala, and T. Watari, Microelectronic Packaging Handbook, Part I, 2nd edition, Chapman and Hall (1997) 3. Charles A. Harper ‘’Electronic Packaging and Interconnection Handbook’’,McGraw-Hill(2005). 4. P. Zarrow, “On the Forefront: Lead Free: Don''t Fight a Fact, Deal with it!” Circuit Assembly, Vol. 10, pp. 18-20 (1999) 5. 廖文楷, “外加應變對鎳/鍚界面反應之影響”,碩士論文,國立中興大學化學工程學系(2011)。 6. Mulugeta. Abtew, Guna. Selvaduray, “Lead-free solder in Microelectronics”, Material Science and Engineering, Vol.27, p.p.95-141(2000). 7. Daniel Lu, C.P.Wong ‘’Material for Advanced packaging’’, Springer(2009). 8. King-Ning Tu , “Solder joint technology” , Springer(2007). 9. K. N. Tu, “Interdiffusion and reaction in bimetallic Cu-Sn thin films”, Acta Metallurgica, Vol.21, pp.347-354(1973). 10. Z. Mei, A. J. Sunwoo, anf J. W. Morris. Jr, “Analysis of low-temperature intermetallic growth in copper-tin diffusion couples”, Metallurgical Transaction A, Vol. 23, pp. 857-864, 1992. 11. J. Gorlich, G. Schmitz, K. N. Tu, “On the mechanism of the binary Cu/Sn solder reaction”, Jounral of applied physics letters, Vol.86, pp.053106:1-3, 2005. 12. P.Nash and A. Nash, “Binary Alloy Phase Diagrams,” ed. T.B. Massalski, ASM, Materials Park, Vol.3, (1990). 13. 劉家明and 高振宏,“Sn-3.5Ag 無鉛銲料與BGA 墊層反應之研究,”國立中央大學,化學工程研究所碩士論文,(2000)。 14. J.W. Yoon, S. W. Kim, and S. B. Jung, “Effects of reflow and cooling conditions on interfacial reaction and IMC morphology of Sn-Cu/Ni solder joint,” Journal of Alloys and Compounds, Vol. 415, pp. 5661, (2006). 15. R. Labie, W. Ruythooren, and J. Van Humbeeck, “Solid state diffusion in Cu-Sn and Ni-Sn Diffusion couples with flip-Chip Scale dimensions,” Intermetallics, Vol.15, pp. 396-403, (2007). 16. 王朝弘, “電子與熱電系統中銲點之界面反應與微結構演變”, 博士論文,國立清華大學化工所(2008)。 17. 汪建銘,材料分析,p673-700,2005年3月。 18. J. Y. Snog, Jin. Yu, T. Y. Lee, “Effects of reactive diffusion on stress evolution in Cu–Sn films”, Scripta Meterialia, Vol.51,p.p.167-170(2004). 19. S.L. Ngoh, W. Zhou1, H. L. Pang1, A.C. Spowage and X.Q. Shi,’’Effect of Stress on Interfacial Intermetallic Compound Development of Sn-Ag-Cu Lead-Free Solder Joint on Au/Ni/Cu Substrate’’, Electronics Packaging Technology Conference, 2004. 20. J. Y. Huh, S. J. Moon,”Effect of elastic stresses on solid-state amorphization of Zr/Co mutilayers”, Thin Solid Films, Vol.377-378, p.p.611-616(2000). 21. T.C. Hu, F.C. Hsu, A.W. Huang and M.T. Lin, “Influence of External Strain on the Growth of Interfacial Intermetallic Compounds Between Sn and Cu Substrates”, Journal of ELECTRONIC MATERIALS, Vol. 41, No. 12, 2012. 22. 李幸易,銅-鍚介金屬生成反應與外在應力關係之探討碩士論文-國立中興大學精密所(2011). 23. T Kakeshita, K. Shimizu, R Kawanaka, et al. “Grain Size Effect of Electro-Plated Tin Coatings on Whisker Growth.” Journal of Materials Science., vol. 17, pp. 2560-2566 (1982) 24. Z. Lee and D. N. Lee. “Spontaneous Growth Mechanism of Tin Whisker.” Acta Materllurgica, vol.46, pp. 3701-3714 (1998) 25. http://www.tycoelectronics.com/customersupport/rohssupportcenter/pdf/tyco_electronics_hilty_ipc_Boston_2005.pdf 26. http://www.tycoelectronics.com/customersupport/rohssupportcenter/pdf/2010_CALCE_Tin_Whsker_Conference_TE.pdf 27. J. Y. Snog, Jin. Yu, T. Y. Lee, “Effects of reactive diffusion on stress evolution in Cu–Sn films”, Scripta Meterialia, Vol.51,p.p.167-170(2004). 28. S.L. Ngoh, W. Zhou1, H. L. Pang1, A.C. Spowage and X.Q. Shi,’’Effect of Stress on Interfacial Intermetallic Compound Development of Sn-Ag-Cu Lead-Free Solder Joint on Au/Ni/Cu Substrate’’, Electronics Packaging Technology Conference, 2004. 29. J. Y. Huh, S. J. Moon,”Effect of elastic stresses on solid-state amorphization of Zr/Co mutilayers”, Thin Solid Films, Vol.377-378, p.p.611-616(2000). 30. 楊卓朕, “以四點彎矩方法探討外加應力與銅-錫介金屬層生成關係”,碩士論文,國立中興大學精密所(2010)。 31. T. Takenaka , S. Kano, M. Kajihara, N. Kurokawa , K. Sakamoto, “Growth behavior of compound layers in Sn/Cu/Sn diffusion couples during annealing at 433–473K”, Materials Science and Engineering A, Vol.396 p.p.115–123(2005). 32. 關德林,張俊善”晶體的高溫塑性變形”,大連理工大學出版社(1989)。 33. 陳文泰,“錫銅無鉛銲料與Ni基材界面反應之研究”碩士論文,國立中興大學化材所(2002).
摘要: 本研究以設計微拉力試驗機測試方法探討應力條件對鎳-錫介金屬薄膜生成之應用,測試進行中由電腦伺服控制系統對微拉力試驗機測試之試件進行應力施加及回授控制,讓試件可以穩定的受到所需應力大小之條件,探討施加外應力對於鎳-錫界面反應介金屬化合物的生成之影響。 本研究設計之微拉力試驗機測試方法探討應力條件分別以不同外加應力(拉伸應力、壓縮應力、不受力)及不同應力大小(25 MPa、50 MPa、100 MPa),在熱處理溫度200度的環境中,以不同的熱處理時間(1天、3天、5天),分別探討鎳-錫介金屬化合物(IMC)的生成厚度結果比較及探討外加應力及熱處理時間對IMC生成的影響。 實驗設備採用HT-2402電腦伺服材料試驗機配裝HT-8747A高溫恆溫箱,具有伺服動力回授系統,閉迴路控制作業系統,具定荷重、定速率、定應力、定位移等控制功能,能滿足測試試件在設定溫度之環境中,持續穩定的保持受測之力值,達成鎳-錫介金屬薄膜生成厚度之變化研究結果的精確性,測試過程中為提升效率、節能省電,夾具製作有三階段改良工程,成功的滿足在高溫下耐受拉力、壓力及同軸度力值精度等測試機能,確保實驗準確性並提升測試效率。 結論發現(一)不受外加應力之介金屬薄膜生成會隨熱處理時間增加生成厚度。(二)外加應力對IMC生力的厚度有一定的影響(三)外加拉伸應力較外加壓縮應力之IMC生成厚度較厚,且外加應力對IMC生成的厚度會受外加應力大小及熱處理時間而改變。
A temperature controlled tensile testing was performed to investigate the influence of external stress on the growth of an interfacial Ni-Sn IMC layer. The test specimens were prepared by depositing 25 μm layers of tin atop of copper substrate using electroplating. Samples were then clamped in a micromechanical testing apparatus integrated with a furnace. Experiments were carried out using load feedback control to provide constant load on the specimens with the stress level of 25 MPa, 50 MPa and 100 MPa under constant temperature at 200°C for 1 to 5 days annealing. CoMParisons were made between samples undergoing stresses and those without stresses annealing. We observed the influence of stress levels and aging time on the formation of intermetallic compounds (IMC). Stress does influence the formation of Ni/Sn IMC. The thickness of IMC increased under stress. The growth rate of IMC was faster in stressed tin samples. Moreover, the formation of IMC micrographic structures under external stress differs considerably according to the level of stress. The Experimental equipments used HT-2402 computer server testing machine equipped with HT-8747, a high temperature oven. With a server power feedback system, closed-loop control system, and a constant load, constant speed, constant stress, position shift and other control functions can meet the test pieces at a set temperature of the environment, sustainable and stable to keep the subject of the force value. The changing results of the Ni-Sn intermetallic film thickness generated the accuracy of the testing process to improve efficiency, energy saving and fixture. There are three steps of production improvement projects have successfully met resistance at high temperatures, tension, pressure, and force values concentricity precision test function to ensure the accuracy of experiments and improve test efficiency.
URI: http://hdl.handle.net/11455/4324
其他識別: U0005-1208201310524500
文章連結: http://www.airitilibrary.com/Publication/alDetailedMesh1?DocID=U0005-1208201310524500
Appears in Collections:精密工程研究所

文件中的檔案:

取得全文請前往華藝線上圖書館

Show full item record
 
TAIR Related Article
 
Citations:


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.