請用此 Handle URI 來引用此文件: http://hdl.handle.net/11455/4331
標題: 非對稱微透鏡陣列之製程設計與開發
Process Design and Development of Asymmetric Microlens Array
作者: 洪建欣
Hung, Chien-Hsin
關鍵字: 非對稱微透鏡陣列
asymmetric lens array
舉離法
斜向熱熔法
光控膜
lift-off method
oblique melting method
light-control film.
出版社: 精密工程學系所
引用: [1]Stern, M. B., and Jay, T. R., “Dry etching for coherent refractive microlens arrays,”Optical Engineering, Vol. 33, No. 11, pp.3547-3551,1994. [2]Popovic Z. D., Sprague, R. A., and Connell, G. A. N., “Technique for monolithic fabrication of microlens arrays,”Applied Optics, Vol. 27, pp. 1281-1284, 1988. [3]Xu Q., Yang, L., Shu, X., and Yang, G., “Step heat-forming method for expanding the N.A. range of refractive microlens,”Acta Optica Sinica,Vol. 18, pp. 1128-1133, 1933. [4]Jay, T. T., and Stern, M. B., “Preshaping photoresist for refractive microlens fabrication.”Optical Engineering, Vol. 33, pp. 3552-3555,1994. [5]Park, E. H., and Kim, J. K., and Kwon, Y. S., “Microlens for efficient coupling between LED and optical fiber,”IEEE Photon. Technol. Lett., vol. 11, pp. 439-441, 1999. [6]Cox, W. R., Chen, T. and Hayes, D., “Micro-optics fabrication by ink-jet printing,”Optics &Photonics News, Vol. 12, , pp. 32-35, 2001. [7]林盈妃,“非對稱微透鏡陣列設計製作研究”,碩士論文,國立中興大學,2010。 [8]Ezell, B., “Making microlens backlights grow Up,” Information Display, vol. 17, pp. 42-45, 2001. [9]陳燕儀、呂世源,“光學膜-光的魔術師”科學發展,vol. 414,pp. 62-67,2007。 [10]Yang, H., Chou, M. C., Yang, A., Mu. C. K. and Shyu, R. F., “Realization of fabricating microlens array in mass production,” Proc. SPIE, vol. 3739, pp. 178–185, 1999. [11]Yang, H., Pan, C. T. and Chou, M. C., “Ultra-fine machining tool/molds by LIGA Technology,” J. Micromech. Microeng., vol.11, pp. 94-99, 2001. [12]Daly, D., Steven, R. F., Hutley, M. C. and Davies, N., “Manufacture of microlenses by melting photoresist,” Meas. Sci. Technol., vol. 1, pp. 759-766, 1990. [13]Schilling, A., Merz, R., Ossmann, C. and Herzig, H. P., “Surface Profiles of Reflow Microlenses under the Influence of Surface Tension and Gravity,” Opt. Eng., vol. 39, pp. 2171-2176, 2000. [14]Lin, C. P., Yang, H. and Chao, C. K., “Hexagonal microlens array modeling and fabrication using a thermal reflow process,” J. Micromech. Microeng., vol. 13, pp. 775-781, 2003. [15] Yang, H., Chao, C. K., Wei, M. K. and Lin, C. P., “High fill-factor microlens array mold insert fabrication using a thermal reflow process,” J. Micromech. Microeng., vol. 14, pp. 1197-1204, 2004. [16]謝漢萍、黃乙白、蘇睦仁,“非對稱微透鏡陣列光控制薄膜在反射式液晶顯示器的應用”, 光學工程, vol. 79 , pp. 4-11,2002。 [17]Ko, F. J. and Shieh H. -P. D.,“Brightness and contrast enhancement of reflective liquid crystal displays by microlens array light control film” Japanese Journal of Applied Physics, Part 1: Regular Papers and Short Notes and Review Papers, vol. 39, pp. 2647-2650, 2000. [18]Huang, Y. P., Chen, J. J., Ko, F. J. and Shieh H. -P. D., “Multidirectional asymmetrical microlens array light control film for improved image in reflective color liquid crystal displays” Japanese Journal of Applied Physics, Part 1: Regular Papers and Short Notes and Review Papers, vol. 41, pp. 646-651, 2002. [19]Lin, T. W., Chen, C. F., Yang J. J. and Liao, Y. S., “A dual-directional light-control film with a high-sag and high-asymmetrical-shape microlens array fabricated by a UV imprinting process” J. Micromech. Microeng. vol. 18, 2008. [20]Furmidge, C. G. L., “Studies at phase interfaces. I. The sliding of liquid drops on solid surfaces and a theory for spray retention” Journal of Colloid Science, 1962. [21]Bateni, A., Ababneh, A., Elliott, J. A. W., Neumann, A.W. and Amirfazli, A.,“Effect of gravity and electric field on shape and surface tension of drops” Advances in Space Research, vol. 36, pp. 64-69, 2005. [22]ElSherbini, A. I. and Jacobi, A. M., “Liquid drops on vertical and inclined surfaces I. An experimental study of drop geometry” Journal of Colloid and Interface Science, vol. 273, pp. 556-565, 2004. [23]Hung, S. Y., Lin, C. P., Yang, H. and Chang, Y. P., “Optimal design using thermal reflow and caulking for fabrication of gapless microlens array mold inserts,” Optical Engineering, vol. 46, pp. 043402-1~8, 2007. [24]Han, M., Lee, W., Lee, S. K. and Lee, S. S., “3D microfabrication with inclined/rotated UV lithography” Sensors and Actuators, A: Physical, vol. 111, pp. 14-20, 2004. [25]Huang, Y. J., Chang, T. L., Chou, H. P. and Lin, C. H., “A novel fabrication method for forming inclined groove-based microstructures using optical elements” Japanese Journal of Applied Physics, vol. 47, pp. 5287-5290, 2008. [26]Yoon, Y. K. and Allen, M. G., “Proximity mode inclined UV lithography” Solid-State Sensors, Actuators, and Microsystems Workshop Hilton Head Island, South Carolina, pp.4-8, 2006. [27]Hung, S. Y., Chen, S. N., Lin, C. P. and Yang, H., “The robust design for gapless microlens array fabrication using the incomplete developing and thermal reflow process,” Microwave and Optical Technology Letters, vol. 49, pp.23-29, 2007. [28]Hung, S. Y., Chao, C. K., Lin, T. H. and Lin, C. P., “Applying ANN/GA algorithm to optimize the high fill-factor microlens array fabrication using UV proximity printing process,” Journal of Micromechanics and Microengineering, vol. 15, pp. 2389-2397, 2005.
摘要: 本研究開發出一種應用於光控膜上的非對稱微透鏡陣列製程,透過該微透鏡可以增進液晶顯示器收集側向光源效率,並改善視角內所產生的眩光問題。本研究開發出三種不同製程來製作非對稱透鏡陣列,第一種製程以舉離法在晶圓上形成一凸起或凹陷的銅膜基座,再進行光阻塗佈之後,透過光罩對位方式來進行曝光,顯影之後便可獲得圓形光阻柱形成於基座上,利用銅膜基座改變光阻在完全熱熔之後液態光阻與基座之間的接觸面積與接觸形態,進而改變液態光阻的表面張力,當晶圓倒置斜放之後,光阻熱熔時,銅基座除了可以精確控制液態光阻的底面形狀之外,也可有效防止液態光阻滑移,可以製作出高度較高、曲率半徑較小的非對稱微透鏡陣列,第二種製程為利用斜向曝光及顯影製程,在晶圓上產生一具圓形截面的斜向光阻柱陣列,然後將晶圓倒置斜放再利用不完全熱熔法與重力效應製作非對稱微透鏡陣列,第三種製程為先以微影製程與舉離法製作第一層金屬薄膜圓柱,再進行第二次微影製程將光阻以偏移對位曝光之方式覆蓋於第一層金屬薄膜圓柱,透過金屬圓柱的疏水性大於基板,在熱熔時在金屬圓柱上的光阻拱起使其成為非對稱微透鏡,而在該三種製程中皆可製作出非對稱微透鏡陣列,其中以第一種製程所製作出的斜透鏡陣列偏斜角可以高達55°。
This study develops an asymmetric microlens array process applied to light-control films, through the lateral light collecting efficiency of liquid crystal displays can be enhanced and the glare issue generated in the viewing angle can be improved. The study proposed three different processes to produce the asymmetric microlens array, among which the first process adopts the lift-off method to form a raised or sunken copper based film on the wafer, then after the photoresist coating and exposure with the way of mask qlignment is done. Finally, the circular columns of photoresist are formed on the base after development. The copper metal film is used to change the contact area and contact pattern between the liquid photoresist and the base after the photoresist is fully melted, and then further change the liquid photoresist surface tension . After the wafer is face-down, laced and inclined, when the photoresist is melted, the copper film base can accurately control the bottom shape of the liquid photoresist. In addition, it can effectively prevent the liquid photoresist slippage, through which a high and small-radius-of-curvature asymmetric micro-lens array can be produced. The second process utilizes the oblique exposure and the developing method to produce an oblique photoresist column array with circular cross sections on the wafer, and then the wafer is face-down placed and inclined to produce an asymmetric micro-lens array through the incomplete melt method and the gravitational effect. The third process uses the lithography process and lift-off method firstly to prepare the first layer of metal columns, and then the second lithography is used to cover the photoresist on the first layer of metal columns through offset alignment exposure method. Since the hydrophobicity of the metal columns is greater than the base, the photoresist on the metal column will bulge to make it form an asymmetric microlens array in the melting process. These three processes can be used to produce the asymmetric lens array. However, the first process can produce the asymmetric micro-lens array with an offset angle of up to 55 �.
URI: http://hdl.handle.net/11455/4331
其他識別: U0005-1308201323531900
文章連結: http://www.airitilibrary.com/Publication/alDetailedMesh1?DocID=U0005-1308201323531900
顯示於類別:精密工程研究所

文件中的檔案:
沒有與此文件相關的檔案。


在 DSpace 系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。