Please use this identifier to cite or link to this item:
標題: 基於里德所羅門碼在無線通訊跳頻分碼多工系統中跳頻碼之設計與效能分析
Design and Performance Analysis of Hopping Sequences for FH-CDMA Wireless Communication Systems Based on Reed-Solomon Codes
作者: 鄭偉成
Cheang, Wai-Seng
關鍵字: FH-CDMA
Reed-Solomon Code
出版社: 通訊工程研究所
引用: [1] G. R. Cooper and R. W. Nettleton, “A spread-spectrum technique for high-capacity mobile communications,” IEEE Trans. Veh. Tech., vol. 27, pp. 264-275, 1978. [2] T. Eng and L. B. Milstein, “Comparison of hybrid FDMA/CDMA systems in frequency selective Rayleigh fading,” IEEE J. Select. Areas Commun., vol. 12, pp. 938-951, 1994. [3] M. K. Simon, J. K. Omura, R. A. Scholtz, and B. K. Levitt, Spread Spectrum Communications Handbook, 2nd ed. New York: McGraw-Hill, 1994. Originally published in three parts as Spread Spectrum Communications, Computer Science Press, New York, 1984. [4] T. Mabuchi, R. Kohno and H. Imai, “Multi-hopping and decoding of error correcting for MFSK/FH-SSMA systems,” IEICE Trans. Commun., vol. E76-B, pp. 874-884, 1993. [5] D. Gorenstein and N. Zierler, “A class of cyclic linear error-correcting codes in Pm symbols,” J. Soc. Ind. Appl. Math., vol. 9, pp. 107-214, June 1964. [6] I. S. Reed and G. Solomon, “Polynomial codes over fields,” Inform. Contr., vol. 136, pp. 298-304, Aug. 1960. [7] F. J. MacWilliams and N. J. A. Sloane, The Theory of Error-Correcting Codes, North-Holland, New York, 1977. [8] I. S. Reed and G. Solomon, “Polynomial Codes over Certain Fields,” J. Soc. Ind. Appl. Math., 8: 300-304, June 1960. [9] T. Kasami and S. Lin, “On the Probability of Undetected Error for the Maximum Distance Separable Codes,” IEEE Trans. Commun., COM-32: 98-1006,September 1984. [10] G.-C. Yang and J.-Y. Jaw, “Performance analysis and sequence designs of synchronous code-division multiple-access systems with multimedia services,” IEE Proc.-Commun., vol. 141, pp. 371-378, Dec. 1994. [11] I. S. Reed, “k-th Order Near-Orthogonal Codes,” IEEE Transactions on Information Theory, Volume IT-15, pp. 116-117, January 1971. [12] G. Einarsson, “Address Assignment for a Time-Frequency-Coded, Spread Spectrum System,” Bell System Technical Journal, Volume 59, pp. 1241-1255, 1980. [13] A. Lempel and H. Greenberger, “Families of Sequences with Optimal Hamming Correlation Properties,” IEEE Transactions on Information Theory, Volume IT-20, pp. 90-94, January 1974. [14] R. M. Roth and G.. Seroussi, “On Cyclic MDS Codes of Length q over GF(q),” IEEE Transactions on Information Theory, Volume IT-32, pp. 284-285, March 1986. [15] G. Solomon, “Optimal Frequency Hopping Sequences for Multiple Accsee,” Proceedings of a Symposium on Spread Specturm Communication, Volume 1, AD-915852, pp. 33-35, 1973. [16] I. Vajda, “Code Sequences for Frequency-Hopping Multiple-Access Systems,” IEEE Trans. Commun (in press). [17] T. Eng and L. B. Milstein, “Comparison of hybrid FDMA/CDMA systems in frequency selective Rayleigh fading,” IEEE J. Select. Areas Commun., vol. 12, 99. 938-951, 1994 [18] Y.R. Tasi and J.F. Chang, “Using frequency hopping spread spectrum technique to combat multipath interference in a multi-accessing environment,” IEEE Trans. Vehicular Technol., vol. 43, no. 2, pp. 211-222, May 1994. [19] G.K. Kaleh, “Frequency-diversity spread-spectrum communication system to counter bandlimited Gaussian interference,” IEEE Trans. Commun., vol. 44, no. 7, pp. 886-893, July 1996. [20] G.-C. Yang and W.C. Kwong, “Frequency-hopping codes for multi-media services in mobile telecommunications,” IEEE Trans. Vehicular Technol., vol. 48, no. 6, pp. 1906-1915, Nov. 1999. [21] D.J. Goodman, P.S. Henry, and V.K. prabhu, “Frequency-hopping multilevel FSK for mobile radio,” Bell Syst. Tech. J., vol. 59, no. 7, pp. 1257-1275, Sept. 1980. [22] G.-C. Yang and W.C. Kwong, Prime Codes with Applications to CDMA Optical and Wireless Networks, Norwood, MA: Artech House, 2002. [23] G.-C. Yang and S.-Y. Lin, and W.C. Kwong, “MFSK/FH-SSMA wireless systems with double-media services over fading channels,” IEEE Trans. Vehicular Tech., vol. 49, no.3, pp. 900-910, May 2000. [24] G.I. Turin, “Introduction to spread spectrum antimultipath techniques and their applications to urban digital radio,” Proc. IEEE, vol. 68, pp. 328-353, Mar. 1980. [25] S. H. Kim and S. W. Kim, “Frequency- hopped multiple access communications with multicarrier on-off keying in Rayleigh fading channels,” IEEE Trans. commun., vol. 48, no. 10, pp. 1692-1701, Oct. 2000 [26] T. Mabuchi, R. Kohno, and H. Imai, “Multiuser detection scheme based on canceling cochannel interference for MFSK/FH-SSMA system,” IEEE J. Select. Areas Commun., vol. 12, pp. 593-604, May 1994. [27] C.-C. Wang, “Design and Performance Analyses for Various FH-CDMA Wireless Communication Systems,” Thesis, National Chung-Hsing University, Jul. 2003. [28] M. Schwartz, W. R. Bennett and S. Stein, Communication Systems and Techniques, New York: McGraw-Hill, 1966. [29] J.-J. Chen and G.-C. Yang, “CDMA Fiber-Optic Systems with Optical Hard Limiters,” Lightwave Tech. J., vol. 19, pp. 950-958, July 2001. [30] Azizoğlu, M., J. A. Salehi and Y. Li, “Optical CDMA via Temporal Codes,” IEEE Tran. Commun., vol. 39, pp. 1162-1170, July 1992. [31] J. G. Proakis, Digital Communication, McGraw-Hill, 4th edition, 2001. [32] M. F. Lin, G. C. Yang, C. Y. Chang, Y. S. Liu and W. C. Kwong “Frequency-Hopping CDMA With Reed-Solomon Code Sequences,” IEEE Tran. Commun, VOL. 55, NO. 11, NOVEMBER 2007 [33] S.Mari'c, “Construction of optimal frequency hopping sequences for minimizing bit errors in selective fading channels characteristic to digital cellular systems,” IEE Proc.-Commum, vol. 142, no.4, pp.271-273, Aug.1995 [34] F. R. K. Chung, J. A. Salehi, and V. K. Wei, “Optical orthogonal codes: Design, analysis, and applications,” IEEE Trans. Inf. Theory, vol. 35, pp.595-604, May 1989. [35] G.-C. Yang and T. Fuja, “Optical orthogonal codes with unequal autoand cross-correlation constraints,” IEEE Trans. Inf. Theory, vol. 41, pp.96-106, Jan. 1995. [36] S. Mashhadi and J.A. Salehi, “Code-division multiple-access techniques in optical fiber networks-part III: optical and logic gate receiver structure with generalized optical orthogonal codes,” IEEE Trans. Commun., vol. 54, no. 8, pp. 1457-1468, Aug. 2006.
摘要: 在跳頻分碼多工系統(FH-CDMA System)中,籍由分配各自不同的跳頻碼給用戶,能讓多個用戶可以同時地使用同一頻帶來傳送所需的資料。然而,當不同用戶在同一時間使用相同頻率時會發生所謂的多重存取干擾(MAI),以至限制可同時使用系統的用戶總數。而籍由適當的跳頻碼設計,可大幅降低多重存取干擾)之影響。在本論文中,我們探討利用里德所羅門碼之分群設計建造跳頻碼,我們提出兩種利用里德所羅門碼分群的建造方式,第一種是針對在同步系統中,籍由提高最大互相關函數值至d,來產生qd+1組之跳頻碼;而第二種方式則可在非同步系統中,提供qλc組之跳頻碼。在系統之效能上,我們專注於最大循環互相關函數值為λc =2之跳頻碼,並且此q2組跳頻碼可進一步分割為q群,使得任兩組位於相同群內之跳頻碼的最大互相關函數值降為1。在本論文的最後,我們也提供在瑞利(Rayleigh)通道下之開關鍵移(OOK)跳頻分碼多工系統之效能分析。
By assigning a distinct frequency-hopping (FH) pattern to each user, frequency-hopping code-division multiple-access (FH-CDMA) systems allow a lot of users to share the same transmission bandwidth simultaneously. However, multiple access interference (MAI) occurs when the same carrier frequency is utilized by more than one users at the same time. Hence, MAI increases with the number of simultaneous users and limits the capacity of FH-CDMA systems. MAI can be greatly reduced by controlling the cross-correlation property of FH patterns. In this thesis, we have proposed a new family of FH patterns based on the Reed-Solomon (RS) codes. For synchronous system, the new construction can provide up to qd+1 FH patterns by increasing the maximum cross-correlation function to d, As for non-synchronous system, there are in total qλc FH patterns from the new construction. For the performance analysis, we focus on the FH patterns with maximum cross-correlation value being equal to two. Furthermore, these q2 FH patterns can be partitioned into q cosets of which the maximum cross-correlation value between any two codewords in the same coset becomes one. Finally, the system performance of on-off-keying (OOK)/ FH-CDMA scheme over a Rayleigh fading channel is given.
其他識別: U0005-2008200809211700
Appears in Collections:通訊工程研究所



Show full item record
TAIR Related Article

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.