Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/4873
標題: 應用於M-QAM正交分頻多工系統的改良型非互斥分割部份傳輸序列技術
A PTS Technique With Non-Disjoint Sub-Block Partitions in M-QAM OFDM Systems
作者: 杜承恩
Tu, Cheng-En
關鍵字: OFDM
正交分頻多工
PAPR
PTS
sub-block partition
峰均功率比值
部份傳輸序列
子區塊分割
出版社: 通訊工程研究所
引用: [1] L.J. Cimini, Jr., “Analysis and simulation of a digital mobile channel using orthogonal frequency division multiplexing,”IEEE Trans. Commun., vol. 33, pp. 665-675, July 1985. [2] S. H. Han and J. H. Lee, “An overview of peak-to-average power ratio reduction techniques for multicarricer transmission,”IEEE Wireless Commun., vol. 12, no. 2, pp. 56-65, Apr. 2005. [3] A. E. Jones, T. A. Wilkinson, and S. K. Barton, “Block coding scheme for reduction of peak to mean envelope pwoer ratio of multicarrier transmission scheme,” Elect. Lett., vol. 30, pp. 2098-2099, Dec. 1994. [4] J. A. Davis and J. Jedwab, “Peak-to-mean power control in OFDM, Golay complementary sequences, and Reed-Muller codes,” IEEE Trans. Inform. Theory, vol. 45, pp. 2397-2417, Nov. 1999. [5] K.G. Paterson, “Generalized Reed-Muller codes and power control in OFDM modulation,” IEEE Trans. Inform. Theory, vol. 46, pp. 104-120, Jan. 2000. [6] R. W. Bauml, R. F. H. Fischer, and J. B. Huber, “Reducing the peak-to-average power ratio of multicarrier modulation by selective mapping,” Electron. Lett., vol. 32, no. 22, pp. 2056-2057, 1996. [7] M. Breiling, S. H. Muller-Weinfurtner, and J. B. Huber, “SLM peak-power reduction without explicit side information,” IEEE Commun. Lett., vol. 5, pp. 239-241, June 2001. [8] H. Chen and H. Liang, “Combined selective mapping and binary cyclic codes for PAPR reduction in OFDM systems,” IEEE Trans. Wireless Commun., vol. 6, no. 10, pp. 3524-3528, Oct. 2007. [9] S. H. Muller and J. B. Huber, “OFDM with reduced peak-to-average pwoer ratio by optimum combination of partial transmit sequences,” Electron. Lett., vol. 33, no. 5, pp. 368-369, 1997. [10] C. Tellambura, “Improved phase factor computation for the PAR reduction of an OFDM signal using PTS,” IEEE Commun. Lett., vol. 5, no. 4, pp. 135-137, Apr. 2001. [11] H. Chen and H. Liang, “PAPR reduction of OFDM signals using partial transmit sequences and Reed-Muller codes,” IEEE Commun. Lett., vol. 11, no. 6, pp. 528-530, June 2007. [12] L. J. Cimini, Jr. and N. R. Sollenberger, “Peak-to-average power ratio reduction of an OFDM signal using partial transmit sequences,” IEEE Commun. Lett., vol. 4, no. 3, pp. 86-88, Mar. 2000. [13] Y.-R. Tsai and S.-J. Huang, “PTS with Non-Uniform Phase Factors for PAPR Reduction in OFDM Systems,” IEEE Commun. Lett., vol. 12, no. 1, pp. 20-22, Jan. 2008. [14] L. Litwin , “An introduction to multicarrier modulation,” IEEE Potentials, Volume: 19 Issue: 2, Apr/May 2000. [15] C. Tellambura, “Computation of the continuous-time PAR of an OFDM signal with BPSK subcarriers,“ IEEE Commun. Lett., vol. 5, pp. 185-187, Apr. 2001. [16] Seog Geun Kang, Jeong Goo Kim, Eon Kyeong Joo, “A novel subblock partition scheme for partial transmit sequence OFDM, “Broad. IEEE Trans. on., vol. 45, pp. 333 - 338, Sept. 1999. [17] S. Lin and D. J. Costello, Jr., Error Control Coding, 2nd ed. Upper Saddle River, NJ: Prentice Hall, 2004. [18] C. R¨oßing and V. Tarokh, ”A construction of OFDM 16-QAM sequences having low peak powers,” IEEE Trans. Inform. Theory, vol.47, no.5, pp.2091-2094, July 2001. [19] C. V. Chong and V. Tarokh, ”A simple encodable/decodable OFDM code with low peak-to-mean envelope power ratio,” IEEE Trans. Inform. Theory, vol.47, no.7, pp.3025-3029, Nov. 2001. [20] S. Lin and D. J. Costello, Jr., Error Control Coding. Englewood Cliffs, NJ: Prentice-Hall, 2004 [21] E. Costa and S. Pupolin, “M-QAM-OFDM system performance in the presence of a nonlinear amplifier and phase noise,” IEEE Trans. Commun. Theory, vol.50, no.3, pp.462-472, Mar. 2002.
摘要: 本篇論文中,我們提出一種將M-QAM正交分頻多工系統中的資料區塊分割為非互斥子區塊的改良型部分傳輸序列演算法。由於16-QAM星座圖可以由兩個QPSK及四個BPSK的集合構成,如此便可分別在兩個QPSK或四個BPSK區塊上使用不同的互斥分割,即整個16-QAM資料區塊等同於非互斥子區塊。模擬結果顯示,此種非互斥子區塊分割方式在使用插入分割、鄰接分割及隨機分割上PAPR性能皆優於傳統互斥分割的部份傳輸序列。此種非互斥子區塊演算法也可與其他降低複雜度的演算法做結合,進一步達到更好的效能。
A modified PTS algorithm by partitioning an OFDM block into non-disjoint OFDM sub-blocks is presented in this paper for PAPR reduction of M-QAM OFDM signals. Since a 16-QAM constellation can be written as sum of two QPSK sets, respectively four BPSK sets, a non-disjoint sub-block partition of the 16-QAM OFDM block is obtained by applying two different disjoint partitions on QPSK OFDM blocks, respectively four different disjoint partitions on BPSK OFDM blocks. Compared to a disjoint sub-block partition in conventional PTS, numerical results show that themodified PTS with a non-disjoint partition achieves an improvement of PAPR reduction and BER performance for interleaved, adjacent, and random partitioning schemes.
URI: http://hdl.handle.net/11455/4873
其他識別: U0005-3007200900322400
文章連結: http://www.airitilibrary.com/Publication/alDetailedMesh1?DocID=U0005-3007200900322400
Appears in Collections:通訊工程研究所

文件中的檔案:

取得全文請前往華藝線上圖書館



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.