Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/4980
標題: 應用Electro-Fenton程序處理抗生素廢水(TMP) 之研究
Application of Electro-Fenton process on the treatment of antibiotic wastewater(TMP)
作者: 楊伊婷
Yang, Yi-Ting
關鍵字: Electro-Fenton oxidation process
電芬頓氧化程序
Antibiotic
Electrogeneration hydrogen peroxide
mineralization
抗生素
電生成過氧化氫
礦化作用
出版社: 環境工程學系所
引用: 中文部分 (1)圖書 石濤著,環境化學,鼎茂圖書出版股份有限公司,P.3-23~3-25,2009。 張晉、劉力著,水處理工程(上)給水,鼎茂圖書出版股份有限公司,P.13-2~13-15,2010。 (2)期刊論文 李仲翔,“ NF/RO 對水中藥物和個人保健用品之去除效能與機制研究 ”,碩士論文,國立高雄第一科技大學環境與安全衛生工程系,2011。 林思妤,“ 應用TiO2/ITO 複合光觸媒薄膜電極光電催化分解水中磺醯胺類化合物研究 ”,碩士論文,國立高雄第一科技大學環境與安全衛生工程系,2011。 傅啟峰,“ 電催化芬頓法處理皮革廢水 ”,碩士論文,國立台灣大學環境工程研究所,2001。 趙敏傑,“ 以電-芬頓程序法處理2,6-二甲基苯胺 ”,碩士論文,嘉南藥理科技大學環境工程與科學系,2008。 蔡宜君,“ 以不同芬頓程序處理苯胺廢水 ”,碩士論文,嘉南藥理科技大學環境工程與科學系,2006。 鄭佩珊,“ 應用電化學合成過氧化氫處理染料廢水(RB5)之研究 ”,碩士論文,國立中興大學環境工程系,2011。 賴秀美,“ Electro-Fenton處理水相氯酚類化合物之研究 ”,碩士論文,國立中興大學環境工程研究所,2010。 賴淑雯,“ 以高效液相層析儀分析Trimethoprim and Sulfamethoxazole 的藥品 ”,碩士論文,朝陽科技大學應用化學系,2006。 謝長原,“ 電解催化氧化氯酚之研究 ”,碩士論文,國立成功大學環境工程研究所,2001。 (3) 網路資源 維基百科:http://zh.wikipedia.org/wiki/%E7%94%B5%E8%A7%A3 (4) 其他 行政院環境保護署,特定污染源廢(污)水中新興污染物管制研究專案計畫,期末報告,2008。 行政院環境保護署環境檢驗所,水中醫藥類及其代謝之殘留化學物質之檢測技術建立研究(2/4),期末報告,2008。 西文部分 Abdessalem, A. K., Bellakhal, N., Oturan, N., Dachraoui, M., and Oturan, M. A., 2010. Treatment of a mixture of three pesticides by photo- and electro-Fenton processes. Desalination, 250, 450-455. Alcock, R.E., Sweetman, A., and Jones, K.C., 1999. Assessment of organic contaminant fate in wastewater treatment plants selected compounds and physiochemical properties. Chemosphere, 38, 2247-2262. Baeza, C. and Knappe, D. R. U., 2011. Transformation kinetics of biochemically active compounds in low-pressure UV Photolysis and UV/H2O2 advanced oxidation processes. Water research, 45, 4531-4543. Batt, A.L., Snow, D.D., and Aga, D.S., 2005. Occurrence of sulfonamide antimicrobials in private water wells in Washington County, Idaho, USA. Chemosphere, 64, 1963-1971. Boye, B., Brillas, E., and Dieng, M. M., 2003. Electrochemical degradation of the herbicide 4-chloro-2-methylphenoxyacetic acid in aqueous medium by peroxi-coagulation and photoperoxi-coagulation. Journal of Electroanalytical Chemistry, 540, 25-34. Brillas, E., Calpe, J. C., and Casado, J., 2000. Mineralization of 2,4-D by advanced electrochemical oxidation processes. Water research, 34, 2253-2262. Brown, K.D., Kulis, J., Thomson, B., Chapman, T.H., and Mawhinney, D.B., 2006. Occurrence of antibiotics in hospital, residential, and dairy effluent, municipal wastewater, and the Rio Grande in New Mexico. Science of the Total Environmetn, 366,.772-783. Chou, S., Huang, Y. H., Lee, S. N., Huang, G. H., and Huang, C., 1999. Treatment of high strength hexamine-containing wastewater by electro-Fenton method. Water Res. 33, 751-759. Comninellis, C. H. and Pulgarin, C., 1993. Electrochemical oxidation of phenol for wastewater treatment using SnO2 anodes. Journal of Applied Electrochemistry, 23, 108-112. Eliopoulos, G.M. and Moellering, R.C.J., 1996. In: Lorian, V. (Ed.), Antibiotics in Laboratory Medicine. Waverly and Wilkins, Baltimore, MD, 331–396. Gómex, M.J., Petrović, M., Fernández-Alba, A.R., and Barceló, D., 2006. Determination of pharmaceuticals of various therapeutic classess by solid-phase extraction and liquid chromatography-tandom mass spectrometry analysis in hospital effluent wastewaters. Journal of Chromatography A, 1114, 224-233. Gulkaya, I., Surucu, G. A., and Dilek, F. B., 2006. Importance of H2O2/Fe2+ ratio in Fenton’s treatment of a carpet dyeing wastewater. Journal of Hazardous Materials, B136, 763-769. Halling-Sørensen, B., 2001. Inhibition of aerobic growth and nitrification of bacteria in sewage sludge by antibacterial agents. Archives of Environmental Contamination and Toxicology, 40, 451-460. Ho, D. P., Vigneswaran, S., Ngo, H., Kandasamy, J., Chang, C. Y., and Chang, J. S., 2007. Photocatalysis of trimethoprim (TRI) in water. Advanced Oxidation Processes. 3, 1-10. JØrgensen, S. E. and Halling-Sùrensen, B., 2000. Drugs in the environment. Chemosphere, 40, 691-699. Kang, N., Lee, D. S., and Yoon, J., 2002. Kinetic modeling of Fenton oxidation of phenol and momochlorophenls. Chemosphere, 47, 915-924. Kim, S. H., Shon, H. K., and Ngo, H. H., 2010. Adsorption characteristics of antibiotics trimethoprim on powdered and granular activated carbon. Journal of Industrial and Engineering Chemistry, 16, 344-349. Kuo, W.G., 1992. Decolorizing dye wastewater with Fenton’sreagent. Water Research, 26, 881-886. Kwon, B.G., Lee, D.S., Kang, N., and Yoon, J., 1999. Characteristics of p-chlorophenol oxidation by Fenton’s reagent. Water Research, 33, 2110–2118. Lee, H. and Shoda, M., 2008. Removal of COD and color from livestock wastewater by the Fenton method. Journal of Hazardous Materials, 153, 1314-1319. Lin, S. H. and Lo, C.C., 1997. Fenton process for treatment of desizing wastewater. Water Research, 31, 2050-2056. Lin, Y. C., Yu, T. H., and Lin, C. F., 2008. Pharmaceutical contamination in residential, industrial, and agricultural waste streams: Risk to aqueous environments in Taiwan. Chemosphere, 74, 131–141. Lipczynska-Kochany, E. and Kochany, J., 2008. Effect of humic substances on the Fenton treatment of wastewater at acidic and neutral pH. Chemosphere, 73, 745-750. Meric, S., Kaptan, D., and Olmez, T., 2003. Color and COD removal from wastewater containing Reactive Black 5 using Fenton’s oxidation process. Chemosphere, 54,435-441. Muruganandham, M. and Swaminathan, M., 2004. Decolourisation of Reactive Orange 4 by Fenton and photo-Fenton oxidation technology. Dyes and Pigments, 63, 315-321. Naumczyk, J., Szpyrkowicz, L., and Zilio-Grandi, F., 1996. Electrochemical treatment of textile wastewater. Water Science and Technology, 34, 17-24. Neyens, E. and Baeyens J., 2003. A review of classic Fenton’s peroxidation as an advanced oxidation technique. Journal of Hazardous materials, 33-50. Núñez, L., Antonio, J., Hortal, G., and Torrades, F., 2007. Study of kinetic parameters related to the decolourization and mineralization of reactive dyes from textile dyeing using Fenton and photo-Fenton processes. Dyes and Pigments 75, 647-652. Oturan, M. A., Oturan, N., Lahitte, C., and Trevin, S., 2001. Production of hydroxyl radicals by electrochemically assisted Fenton’s reagent application to the mineralization of an organic micropollutant pentachlorophenol. Journal of Electroanalytical Chemistry, 507, 96-102. Panizza, M. and Cerisola, G., 2009. Electro-Fenton degradation of synthetic dyes. Water Research, 43,339-344. Panizza, M. and Cerisola, G., 2009. Electro-Fenton degradation of synthetic dyes. Water Research, 43, 339-344. Qtaitat, M. A., 2004. Study of the interaction of trimethoprim – montmorillonite by infrared spectroscopy. Spectrochimica Acta Part A, 60, 673-679. Rosales, E., Pazos, M., Longo, M.A., and Sanroman, M.A., 2009. Electro-Fenton decoloration of dyes in a continuous reactor: A promising technology in colored wastewater treatment. Chemical Engineering Journal 155, 62-67. Schümann, U. and Gründler, P., 1998. Electrochemical degradation of organic substances at PbO2 anodes: Monitoring by continuous CO2 measurements. Water Research, 32, 2835-2842. Sun, J. H., Shi, S. H., Lee, Y. F., and Sun, S. P., 2009. Fenton oxidative decolorization of the azo dye Direct Blue 15 in aqueous solution. Chemical Engineering Journal, 155, 680-683. Ternes, T.A., 1998. Occurrence of drugs in German sewage treatment plants and rivers. Water Research, 32, 3245-3260. Ternes, T.A., Meisenheimer, M., McDowell, D., Sacher, F., Brauch, H.-J., Haist-Gulde, B., Preuss, G., Wilme, U., and Zulei-Seibert, N., 2002. Removal of Pharmaceuticals during Drinking Water Treatment. Environmental Science & Technology 36, 3855-3863. Venkatadri, A., Jacquet, G., Bermond, A., and Camel, V., 2002. Electrochemical generation of the Fenton''s reagent: application to atrazine degradation. Water Research, 36, 3517-3522. Wang, C. T., Chou, W. L., Chung, M. H., and Kuo, Y. M., 2010. COD removal from real dyeing wastewater by electro-Fenton technology using an activated carbon fiber cathode. Desalination, 253, 129-134. Wang, Q. and Lemley, A. T., 2002. Oxidation of diazinon by anodic Fenton treatment. Water Research, 36, 3237-3244. Wark, W., 1979. The electrodeposition of zinc from acidified zinc sulphate solution. Journal of Applied Electrochemistry, 9, 721-730. Zhang, H., Fei, C., Zhang, D., and Tang, F., 2007. Degradation of 4-nitrophenol in aqueous medium by electro-Fenton method. Journal of Hazardous Materials, 145, 227-232. Zhang, H., Zhang, D., and Zhou, J., 2006. Removal of COD from landfill leachate by electro-Fenton method. Journal of Hazardous Materials, B135, 106-111.
摘要: 高級氧化程序中,Fenton 氧化程序是利用亞鐵離子和過氧化氫在酸性條件下進行反應,產生出一高氧化能力、非選擇性的氫氧自由基(‧OH),用以氧化廢水中之各種有機物,破壞有機物之鍵結,進一步將廢水中的有機物氧化成二氧化碳和水。本研究使用Electro-Fenton程序降解抗生素(Trimethoprim, TMP)廢水,配合適當參數,探討其礦化作用及去除能力。本系統分別以不銹鋼網及不銹鋼棒為陰陽兩電極之材料,陰極處藉由曝氣產生溶氧,並於通電後還原生成過氧化氫,而陽極處將鐵氧化產生亞鐵離子,進行Fenton反應。 由背景實驗結果可知,本實驗之過氧化氫生成的最佳操作參數為電流1.5 A、空氣曝氣量0.7 NL/min,在此條件下操作180分鐘,其最大過氧化氫淨生成量為57.32 mg/L,而且前30分鐘之生成速率為0.05582 mg-H2O2/min。 研究結果顯示,Fenton氧化程序在pH = 3時,添加10 mg/L 亞鐵離子和50 mg/L 過氧化氫,處理10 mg/L TMP。當反應時間為60分鐘,其TMP去除率為19.3 %;處理時間延長為360分鐘,其TMP、COD、TOC去除率分別為32.1 %、29.2 %、28.1 %。在Electro-Fenton氧化程序中,以生成實驗之最佳操作條件,反應180分鐘後,其TMP去除率為66.0 %;處理時間延長為360分鐘,其TMP、COD、TOC去除率分別為71.8 %、59.4 %、53.6 %。Electro-Fenton氧化程序的處理結果明顯優於傳統的Fenton氧化程序,而且COD去除率和礦化率也都有提升,因此Electro-Fenton氧化程序是有利於TMP之去除,並且增進其礦化效果。
Fenton oxidation process, which is one of the advanced oxidation processes, is performed by reacting ferrous ions with hydrogen peroxide to generate hydroxyl radical (‧OH) under acidic conditions. This process produces a high oxidation ability, non-selective hydroxyl radical which can oxidize a variety of organic matter in the wastewater. Further the powerful oxidizing capability to oxidize organic matter of the wastewater to carbon dioxide and water. In the present study, the application of Electro-Fenton process for the degradation of antibiotic Trimethoprim (TMP) wastewater with the appropriate parameters to explore the mineralization and removal capacity was investigated. The material of cathode and anode were, respectively, stainless steel net and stick used in the system. H2O2 can be electro-generated by reduction of oxygen in the cathode, and ferrous ions can be produced by oxidation of iron in the anode. Based on the results of background experiment, the optimal parameters for electro-generated H2O2 was at current of 1.5 A and air flow of 0.7 NL/min. Under these conditions, the maximum remnant of H2O2 was 57.32 mg/L in 180 min of operation. The formation rate was 0.05582 mg-H2O2/min in 30 min before the reaction. Results show that the Fenton process can degrade 10 mg/L TMP by using 10 mg/L ferrous ions and 50 mg/L hydrogen peroxide in acidic solution after 60 min. The TMP removal rate is 19.3 %. When the treatment time is extended to 360 min, the TMP, COD and TOC removal rates are 32.1, 29.2, and 28.1 % respectively. Electro-Fenton oxidation process with optimal parameters found in generation experiment, the TMP removal rate is 66.0 % after 180 min. When the treatment time is extended to 360 min, the TMP, COD and TOC removal rate are 71.8, 59.4, and 53.6 % separately. The results are significantly better than traditional Fenton oxidation process. The COD removal rate and mineralization are also enhanced. Electro-Fenton oxidation process is conducive to the removal of TMP, and enhance the mineralization.
URI: http://hdl.handle.net/11455/4980
其他識別: U0005-1106201214484900
文章連結: http://www.airitilibrary.com/Publication/alDetailedMesh1?DocID=U0005-1106201214484900
Appears in Collections:環境工程學系所

文件中的檔案:

取得全文請前往華藝線上圖書館



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.