Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/4982
標題: 床質添加劑影響流體化床生質產氫之研究
Effect of bed-additives on hydrogen production during fluidized bed biomass gasification process
作者: 陳緯政
Chen, Wei-Cheng
關鍵字: biomass energy
生質能
hydrogen
gasification
fluidized bed
additive
氫氣
氣化
流體化床
添加劑
出版社: 環境工程學系所
引用: 1. 吳耿東,李宏台,廢棄物能源利用技術,環保月刊,第2卷,第5期,pp. 82-84,2002。 2. 劉憶如,2011年國際經濟情勢展望,台灣經濟論壇,第9卷,第1期,pp. 23-30,2011。 3. BP(英國石油公司), Statistical review of world energy 2007. 2008. 4. IEA(國際能源總署), Key world energy statistics 2010. 2011. 5. 陳建志,許妙行,蔡佳玲,林東緯,何幸蓉,黃郁棻,李彥君,黃如薏,楊鏡堂,再生能源之發展趨勢與前瞻,科技發展政策報導,第3期,pp. 1-26,2008。 6. 王革華,能源與永續發展,新文京出版社,2008。 7. 再生能源網,http://www.re.org.tw/RE2/. 8. 陳孝宇,發展生質柴油和生質酒精對台灣農業部門之影響分析,農業經濟學研究所,國立臺灣大學,碩士論文,2006。 9. 張超群,生質能源發展現況與未來,工研院IKE中心,能源組,2007。 10. 吳耿東,李宏台,化腐朽為能源,科學發展,第383期,pp. 20-27,2004。 11. Mizuno, O., Dinsdale, R., Hawkes, F.R., Hawkes, D.L., and Noike, T., Enhancement of hydrogen production from glucose by nitrogen gas sparging. Bioresource Technology. 73(1): pp. 59-65, 2000. 12. 毛宗強,氫能-21世紀的綠色能源,能源叢書,2008。 13. 經濟部能源局,2010年能源產業技術白皮書, 2010。 14. Bridgwater, A.V. and Cottam, M.L., Opportunities for biomass pyrolysis liquids production and upgrading. Energy & Fuels. 6(2): pp. 113-120, 1992. 15. 張元銘,快速熱裂解技術應用於生質燃料之製作,環境工程與科學系,嘉南藥理科技大學,碩士論文,2004。 16. 張家驥,洪臧燮,何瓊芳,謝哲隆,李元陞,陳奕宏,洪文宗,張慶源,新一代垃圾資源永續管理方案芻議與評析,永續產業發展雙月刊,第48期,pp. 51-59,2010。 17. McKendry, P., Energy production from biomass (part 2): conversion technologies. Bioresource Technology. 83(1): pp. 47-54, 2002. 18. 魏銘彥,陳志成,事業廢棄物的焚化處理,化工技術,第39卷,第6期,pp. 185-193,1996。 19. Basu, P., Combustion and gasification in fluidized beds, Taylor & Francis Group, 2006. 20. Kunii, D. and Levenspiel, O., Fluidization engineering, 2nd Ed. Butter-worth-Heinemann Publishing, 1991. 21. Geldart, D., Gas fluidization technology, John Wiley and Sons Inc, 1986. 22. 羅國肇,流體化床燃燒爐,科學發展,第450期,pp. 6-11,2010。 23. 林秋良,流力行為對廢棄物焚化影響之研究,環境工程學系,國立中興大學,博士論文,2004。 24. Wen, C.Y. and Yu, Y.H., Mechanics of fluidization. Chem. Eng. progr. Symp. Ser. 62: pp. 100-111, 1966. 25. Geldart, D., Single particles, fixed and quiescent beds, in gas fluidization technology, D.Geldart, Ed. John Wiley and Sons, 1986. 26. Baeyens, J., Geldart, D., and Wu, S.Y., Elutriation of fines from gas fluidized beds of geldart a-type powders-effect of adding superfines. Powder Technology. 71(1): pp. 71-80, 1992. 27. Llop, M.F., Casal, J., and Arnaldos, J., Expansion of gas-solid fluidized beds at pressure and high temperature. Powder Technology. 107(3): pp. 212-225, 2000. 28. Al-Zahrani, A.A. and Daous, M.A., Bed expansion and average bubble rise velocity in a gas-solid fluidized bed. Powder Technology. 87(3): pp. 255-257, 1996. 29. Cook, J.L., Khang, S. J., Lee, S. K., and Keener, T.C., Attrition and changes in particle size distribution of lime sorbents in a circulating fluidized bed absorber. Powder Technology. 89(1): pp. 1-8, 1996. 30. Al-zahrani, A.A., Particle size distribution in a continuous gas-solid fluidized bed. Powder Technology. 107(1-2): pp. 54-59, 2000. 31. Darton, R.C., La Nauze, R.D., Davidson, J.F., and Harrison, D., Bubble growth due to coalescence in fluidized beds. Trans instn chem eng. 55: pp. 274-280, 1977. 32. Geldart, D., The effect of particle size and size distribution on the behaviour of gas-fluidised. Powder Technol. 6: pp. 201-215, 1972. 33. Choi, J.H., Son, J.E., and Kim, S.D., Bubble size and frequency in gas fluidized beds. J.Chem.Eng.Jpn. 22: pp. 597-606, 1988. 34. Davidson, J.F., Clift, R., and Harrison, D., Fluidization, 2nd ed. Academic Press, 1985. 35. Guo, B., Li, D., Cheng, C., Zi-an, L., and Shen, Y., Simulation of biomass gasification with a hybrid neural network model. Bioresource Technology. 76(2): pp. 77-83, 2001. 36. 呂錫民,氣化技術,科學發展,第435期,pp. 62-65,2009。 37. Narváez, I., Orío, A., Aznar, M.P., and Corella, J., Biomass gasification with air in an atmospheric bubbling fluidized bed. effect of six operational variables on the quality of the produced raw gas. Biomass and Bioenergy. 35(7): pp. 2110-2120, 1996. 38. Gil, J., Corella, J., Aznar, M.P., and Caballero, M.A., Biomass gasification in atmospheric and bubbling fluidized bed: effect of the type of gasifying agent on the product distribution. Biomass and Bioenergy. 17(5): pp. 389-403, 1999. 39. Aznar, M.P., Caballero, M.A., Gil, J., Martín, J.A., and Corella, J., Commercial steam reforming catalysts to improve biomass gasification with steam-oxygen mixtures. 2. catalytic tar removal. Industrial & Engineering Chemistry Research. 37(7): pp. 2668-2680, 1998. 40. Lucas, C., Szewczyk, D., Blasiak, W., and Mochida, S., High-temperature air and steam gasification of densified biofuels. Biomass and Bioenergy. 27(6): pp. 563-575, 2004. 41. Lv, P., Chang, J., Xiong, Z., Huang, H., Wu, C., Chen, Y., and Zhu, J., Biomass air-steam gasification in a fluidized bed to produce hydrogen-rich gas. Energy & Fuels. 17(3): pp. 677-682, 2003. 42. 楊凱成,生質物於流體化床進行蒸汽氣化之研究,森林學系,國立中興大學,碩士論文,2009。 43. Yang, H., Yan, R., Chen, H., Lee, D.H., Liang, D.T., and Zheng, C., Pyrolysis of palm oil wastes for enhanced production of hydrogen rich gases. Fuel Processing Technology. 87(10): pp. 935-942, 2006. 44. Luo, Z., Wang, S., Liao, Y., Zhou, J., Gu, Y., and Cen, K., Research on biomass fast pyrolysis for liquid fuel. Biomass and Bioenergy. 26(5): pp. 455-462, 2004. 45. Pinto, F., Franco, C., André, R. N., Tavares, C., Dias, M., Gulyurtlu, I., and Cabrita, I., Effect of experimental conditions on co-gasification of coal, biomass and plastics wastes with air/steam mixtures in a fluidized bed system. Fuel. 82(15-17): pp. 1967-1976, 2003. 46. Pinto, F., Franco, C., André, R.N., Miranda, M., Gulyurtlu, I., and Cabrita, I., Co-gasification study of biomass mixed with plastic wastes. Fuel. 81(3): pp. 291-297, 2002. 47. Gil, J., Aznar, M.P., Caballero, M.A., Francés, E., and Corella, J., Biomass gasification in fluidized bed at pilot scale with steam-xygen mixtures: product distribution for very different operating conditions. Energy & Fuels. 11(6): pp. 1109-1118, 1997. 48. Hofbauer, H. and Rauch, R., Stoichiometric water consumption of steam gasification by the FICFB-gasification process. Blackwell Science Ltd, 2008. 49. 呂承翰,廢紙排渣衍生燃料氣化反應過程產能效率及焦油減量之評估研究,環境工程與科學所,逢甲大學,碩士論文,2010。 50. Zhang, H., Xiao, R., Huang, H., and Xiao, G., Comparison of non-catalytic and catalytic fast pyrolysis of corncob in a fluidized bed reactor. Bioresource Technology. 100(3): pp. 1428-1434, 2009. 51. Williams, P.T. and Horne, P.A., Characterisation of oils from the fluidised bed pyrolysis of biomass with zeolite catalyst upgrading. Biomass and Bioenergy. 7(1-6): pp. 223-236, 1994. 52. Regina Oliveira de Souza, T., Modesto de Oliveira Brito, S., and Martins Carvalho Andrade, H., Zeolite catalysts for the water gas shift reaction. Applied Catalysis A: General. 178(1): pp. 7-15, 1999. 53. Siriwardane, R.V., Shen, M.S., and Fisher, E.P., Adsorption of CO2, N2, and O2 on natural zeolites. Energy & Fuels. 17(3): pp. 571-576, 2003. 54. Lappas, A.A., Samolada, M.C., Iatridis, D.K., Voutetakis, S.S., and Vasalos, I.A., Biomass pyrolysis in a circulating fluid bed reactor for the production of fuels and chemicals. Fuel. 81(16): pp. 2087-2095, 2002. 55. He, M., Hu, Z., Xiao, B., Li, J., Guo, X., Luo, S., Yang, F., Feng, Y., Yang, G., and Liu, S., Hydrogen-rich gas from catalytic steam gasification of municipal solid waste (MSW): Influence of catalyst and temperature on yield and product composition. International Journal of Hydrogen Energy. 34(1): pp. 195-203, 2009. 56. Hanaoka, T., Yoshida, T., Fujimoto, S., Kamei, K., Harada, M., Suzuki, Y., Hatano, H., Yokoyama, S.Y., and Minowa, T., Hydrogen production from woody biomass by steam gasification using a CO2 sorbent. Biomass and Bioenergy. 28(1): pp. 63-68, 2005. 57. Mahishi, M.R. and Goswami, D.Y., An experimental study of hydrogen production by gasification of biomass in the presence of a CO2 sorbent. International Journal of Hydrogen Energy. 32(14): pp. 2803-2808, 2007. 58. Koppatz, S., Pfeifer, C., Rauch, R., Hofbauer, H., Marquard-Moellenstedt, T., and Specht, M., H2 rich product gas by steam gasification of biomass with in situ CO2 absorption in a dual fluidized bed system of 8 MW fuel input. Fuel Processing Technology. 90(7-8): pp. 914-921, 2009. 59. Florin, N.H. and Harris, A.T., Hydrogen production from biomass coupled with carbon dioxide capture: The implications of thermodynamic equilibrium. International Journal of Hydrogen Energy. 32(17): pp. 4119-4134, 2007. 60. 胡博誠,生質物氣化程序去除焦油之研究,森林學系,國立中興大學,碩士論文,2009。 61. Delgado, J., Aznar, M.P., and Corella, J., Biomass gasification with steam in fluidized bed: Effectiveness of CaO, MgO, and CaO-MgO for hot raw gas cleaning. Industrial & Engineering Chemistry Research. 36(5): pp. 1535-1543, 1997. 62. 國家實驗研究院,中華民國科學技術年鑑,pp. 868-869,2009。 63. Medrano, J.A., Oliva, M., Ruiz, J., García, L., and Arauzo, J., Catalytic steam reforming of model compounds of biomass pyrolysis liquids in fluidized bed reactor with modified Ni/Al catalysts. Journal of Analytical and Applied Pyrolysis. 85(1-2): pp. 214-225, 2009. 64. Medrano, J.A., Oliva, M., Ruiz, J., García, L., and Arauzo, J., Hydrogen from aqueous fraction of biomass pyrolysis liquids by catalytic steam reforming in fluidized bed. Energy. 36(4): pp. 2215-2224, 2010. 65. Lisboa, J.d.S., Santos, D.C.R.M., Passos, F.B., and Noronha, F.B., Influence of the addition of promoters to steam reforming catalysts. Catalysis Today. 101(1): pp. 15-21, 2005. 66. Vizca''o, A.J., Arena, P., Baronetti, G., Carrero, A., Calles, J.A., Laborde, M.A., and Amadeo, N., Ethanol steam reforming on Ni/Al2O3 catalysts: Effect of Mg addition. International Journal of Hydrogen Energy. 33(13): pp. 3489-3492, 2008. 67. Alarc''on, N., GarcIa, X., Centeno, M.A., Ruiz, P., and Gordon, A., New effects during steam gasification of naphthalene: The synergy between CaO and MgO during the catalytic reaction. Applied Catalysis A: General. 267(1-2): pp. 251-265, 2004. 68. Wu, C. and Williams, P.T., Pyrolysis-gasification of plastics: Mixed plastics and real-world plastic waste with and without Ni-Mg-Al catalyst. Fuel. 89(10): pp. 3022-3032, 2010. 69. Takahashi, J and Mori, T.,Hydrogen production from reaction of apple pomace with water over commercial steam reforming Ni catalysts. Journal of The Jaopan Petroleum Institute. 49(5): 262-267, 2006. 70. Rei, M.H., Yang, S.J., and Hong, C.H., Catalytic gasification of rice hull and other biomass: The general effect of catalyst. Agricultural Wastes. 18(4): pp. 269-281, 1986. 71. Domine, M.E., Iojoiu, E.E., Davidian, T., Guilhaume, N., and Mirodatos, C., Hydrogen production from biomass-derived oil over monolithic Pt- and Rh-based catalysts using steam reforming and sequential cracking processes. Catalysis Today. 133-135: pp. 565-573, 2008. 72. Zhang, R., Brown, R.C., Suby, A., and Cummer, K., Catalytic destruction of tar in biomass derived producer gas. Energy Conversion and Management. 45(7-8): pp. 995-1014, 2004. 73. Xiao, X., Le, D.D., Li, L., Meng, X., Cao, J., Morishita, K., and Takarada, T., Catalytic steam gasification of biomass in fluidized bed at low temperature: Conversion from livestock manure compost to hydrogen-rich syngas. Biomass and Bioenergy. 34(10): pp. 1505-1512, 2010. 74. Rapagn, S., Virginie, M., Gallucci, K., Courson, C., Di Marcello, M., Kiennemann, A., and Foscolo, P.U., Fe/olivine catalyst for biomass steam gasification: Preparation, characterization and testing at real process conditions. Catalysis Today. In Press. 2011. 75. Courson, C., Udron, L., Swierczynski, D., Petit, C., and Kiennemann, A., Hydrogen production from biomass gasification on nickel catalysts: Tests for dry reforming of methane. Catalysis Today. 76(1): pp. 75-86, 2002. 76. Michel, R., Rapagn, S., Di Marcello, M., Burg, P., Matt, M., Courson, C., and Gruber, R., Catalytic steam gasification of miscanthus X giganteus in fluidised bed reactor on olivine based catalysts. Fuel Processing Technology. 92(6): pp. 1169-1177, 2011. 77. Richardson, S.M. and Gray, M.R., Enhancement of residue hydroprocessing catalysts by doping with alkali metals. Energy & Fuels. 11(6): pp. 1119-1126, 1997. 78. Sutton, D., Kelleher, B., and Ross, J.R.H., Review of literature on catalysts for biomass gasification. Fuel Processing Technology. 73(3): pp. 155-173, 2001. 79. García-Bacaicoa, P., Mastral, J.F., Ceamanos, J., Berrueco, C., and Serrano, S., Gasification of biomass/high density polyethylene mixtures in a downdraft gasifier. Bioresource Technology. 99(13): pp. 5485-5491, 2008. 80. Wu, J.C.S. and Chang, T.Y., VOC deep oxidation over Pt catalysts using hydrophobic supports. Catalysis Today. 44(1-4): pp. 111-118, 1998. 81. Kim, S.C., The catalytic oxidation of aromatic hydrocarbons over supported metal oxide. Journal of Hazardous Materials. 91(1-3): pp. 285-299, 2002. 82. Zhang, J., Xu, H., Ge, Q., and Li, W., Highly efficient Ru/MgO catalysts for NH3 decomposition: Synthesis, characterization and promoter effect. Catalysis Communications. 7(3): pp. 148-152, 2006.
摘要: 由於化石燃料大量的消耗和天然資源的匱乏使得生質能源成為具吸引力的替代能源。本研究主要探討沸石、氧化鈣、鹼土金屬、過渡金屬添加劑促進流體化床生質產氫之情形。而添加劑透過比表面積分析、SEM/EDS、XRD儀器分析其特性。生質氣化顯示以沸石添加劑比氧化鈣具有較佳之提升產氫之能力,而最佳劑量於200g。對於鹼土金屬Ca/SiO2主要形成CaO有助於吸附二氧化碳使其產量降低而Mg/SiO2促進水煤氣反應而提升氫氣產率。對於過渡金屬添加劑,結果顯示Ni/Al2O3比Cu/Al2O3具有較高之提升氫氣產量能力,是由於鎳金屬有較高之分散性及比表面積。研究結果顯示,所有添加劑均有助於提升氫氣之產率。其添加劑主要扮演著增進反應速率、提高氣化能力、促進碳轉換重要角色
The depletion of fossil fuels and exhaustion of natural resources make biomass energy as an attractive alternative energy source. The objective of the study focuses on the promotion of biomass gasification for hydrogen production in fluidized bed reactor by bed additive including zeolite,CaO alkaline earth metals, and transition metals. The additive characterizations are performed through nitrogen adsorption apparatus, field-emission scanning electron microscope/energy dispersive spectrometer (FE-SEM/EDS), and X-ray powder diffraction (XRPD) spectroscopy techniques. The results of biomass gasification show zeolite additive has higher capacity for enhancing hydrogen production rate than CaO and the optimal amount was 200g. For earth metal additive, Ca/SiO2 decreases the CO2 selectivity and Mg/SiO2 enhances the H2 selectivity due to CO2 adsorption via the formation of CaO and the promotion of water gas shift reaction, respectively. For transition metal additive, Ni/Al2O3 has higher capacity for promotion of hydrogen production than Cu/Al2O3 because of well Ni metal dispersion and high specific surface area. The results indicate all these additives enhance the hydrogen production rates with the increase of the additive amount. The additives play important roles in the increase of reaction rate, enhancement of biomass gasification, and promotion of carbon transformation.
URI: http://hdl.handle.net/11455/4982
其他識別: U0005-1108201117214600
文章連結: http://www.airitilibrary.com/Publication/alDetailedMesh1?DocID=U0005-1108201117214600
Appears in Collections:環境工程學系所

文件中的檔案:

取得全文請前往華藝線上圖書館



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.