Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/4984
標題: 受體模式PMF對污染源定向性研究
A Study on Source Apportionment and Source Location by Using PMF as Receptor Model
作者: 李傑民
Li, Jie-Min
關鍵字: Receptor model
受體模式
PMF
CPF
simulation simple
正矩陣因子法
條件機率函數
自製樣本
出版社: 環境工程學系所
引用: Alleman, L. Y., L. Lamaison, E. Perdrix, A. Robache, and J.-C. Galloo, "PM10 metal concentrations and source identification using positive matrix factorization and wind sectoring in a French industrial zone," Atmospheric Research, vol. In Press, Accepted Manuscript, No. pp. (2010) Buzcu-Guven, B. and M. P. Fraser, "Comparison of VOC emissions inventory data with source apportionment results for Houston, TX," Atmospheric Environment, vol. 42, No. 20, pp. 5032-5043 (2008) Cai, C., F. Geng, X. Tie, Q. Yu, and J. An, "Characteristics and source apportionment of VOCs measured in Shanghai, China," Atmospheric Environment, vol. 44, No. 38, pp. 5005-5014 (2010) Chang, C., C. Wang, D. Mui, M. Cheng, and H. Chiang, "Characteristics of elements in waste ashes from a solid waste incinerator in Taiwan," Journal of hazardous materials, vol. 165, No. 1-3, pp. 766-773 (2009) Chao, M.-R., C.-W. Hu, Y.-L. Chen, G.-P. Chang-Chien, W.-J. Lee, L. W. Chang, W.-S. Lee, and K.-Y. Wu, "Approaching gas-particle partitioning equilibrium of atmospheric PCDD/Fs with increasing distance from an incinerator: measurements and observations on modeling," Atmospheric Environment, vol. 38, No. 10, pp. 1501-1510 (2004) Chemistry Division, A. E. C., Dhaka, Bangladesh, L. H. GNS Science, New Zealand, and C. U. Center for Air Resources Engineering and Science, Potsdam, NY, "Identification of Sources of Fine and Coarse Particulate Matter in Dhaka, Bangladesh" Aerosol and Air Quality Research, vol. 10, No. 4, pp. 345–353 (2010) Cheng, M., C. Chio, C. Huang, J. Chen, C. Wang, and C. Kuo, "Chemical compositions of fine particulates emitted from oil-fired boilers," Journal of Environmental Engineering and Management, vol. 18, No. 5, pp. 355-362 (2008) Chow, J. C., J. G. Watson, H. Kuhns, V. Etyemezian, D. H. Lowenthal, D. Crow, S. D. Kohl, J. P. Engelbrecht, and M. C. Green, "Source profiles for industrial, mobile, and area sources in the Big Bend Regional Aerosol Visibility and Observational study," Chemosphere, vol. 54, No. 2, pp. 185-208 (2004) Currie, L., R. Gerlach, C. Lewis, W. Balfour, J. Cooper, S. Dattner, R. De Cesar, G. Gordon, S. Heisler, and P. Hopke, "Interlaboratory comparison of source apportionment procedures: results for simulated data sets," Atmospheric Environment vol. 18, No. 8, pp. 1517-1537 (1984) Fabretti, J.-F., N. Sauret, J.-F. Gal, P.-C. Maria, and U. Schärer, "Elemental characterization and source identification of PM2.5 using Positive Matrix Factorization: The Malraux road tunnel, Nice, France," Atmospheric Research, vol. 94, No. 2, pp. 320-329 (2009) Galindo, N., E. Yubero, J. F. Nicolás, J. Crespo, C. Pastor, A. Carratalá, and M. Santacatalina, "Water-soluble ions measured in fine particulate matter next to cement works," Atmospheric Environment, vol. 45, No. 12, pp. 2043-2049 (2011) Heo, J., P. Hopke, and S. Yi, "Source apportionment of PM 2.5 in Seoul, Korea," Atmos. Chem. Phys, vol. 9, No. pp. 4957-4971 (2009) Hsu, S., S. Liu, Y. Huang, C. Chou, S. Lung, T. Liu, J. Tu, and F. Tsai, "Long-range southeastward transport of Asian biosmoke pollution: Signature detected by aerosol potassium in Northern Taiwan," Journal of Geophysical Research-Atmospheres, vol. 114, No. D14, pp. D14301 (2009) Iijima, A., K. Sato, Y. Fujitani, E. Fujimori, Y. Saito, K. Tanabe, T. Ohara, K. Kozawa, and N. Furuta, "Clarification of the predominant emission sources of antimony in airborne particulate matter and estimation of their effects on the atmosphere in Japan," Environmental Chemistry, vol. 6, No. 2, pp. 122-132 (2009) Karageorgos, E. and S. Rapsomanikis, "Assessment of the sources of the inorganic fraction of aerosol in a conurbation," International Journal of Environmental Analytical Chemistry, vol. 90, No. 1, pp. 64-83 (2010) Kim, E. and P. Hopke, "Source apportionment of fine particles in Washington, DC, utilizing temperature-resolved carbon fractions," Journal of the Air & Waste Management Association (1995), vol. 54, No. 7, pp. 773 (2004) Kuo, C.Y. , Wang, S. Chang, and M. Chen, "Study of metal concentrations in the environment near diesel transport routes," Atmospheric Environment, vol. 43, No. 19, pp. 3070-3076 (2009) Lee, J. and P. Hopke, "Apportioning sources of PM2. 5 in St. Louis, MO using speciation trends network data," Atmospheric Environment, vol. 40, No. pp. 360-377 (2006a) Lee, J. H. and P. K. Hopke, "Apportioning sources of PM2.5 in St. Louis, MO using speciation trends network data," Atmospheric Environment, vol. 40, No. Supplement 2, pp. 360-377 (2006b) Leuchner, M. and B. Rappenglück, "VOC source-receptor relationships in Houston during TexAQS-II," Atmospheric Environment, vol. 44, No. 33, pp. 4056-4067 (2010) Lestari, P. and Y. D. Mauliadi, "Source apportionment of particulate matter at urban mixed site in Indonesia using PMF," Atmospheric Environment, vol. 43, No. 10, pp. 1760-1770 (2009) Marmur, A., A. Unal, J. Mulholland, and A. Russell, "Optimization-based source apportionment of PM2. 5 incorporating gas-to-particle ratios," Environ. Sci. Technol, vol. 39, No. 9, pp. 3245-3254 (2005) Mazzei, F., A. D''Alessandro, F. Lucarelli, S. Nava, P. Prati, G. Valli, and R. Vecchi, "Characterization of particulate matter sources in an urban environment," Science of The Total Environment, vol. 401, No. 1-3, pp. 81-89 (2008) Metzger K.B., Tolbert P.E.,Klein M., Peel J.L., Flanders W.D., Todd K., Mulholland J.A., Ryan P.B., and Frumkin H., "Ambient air pollution and cardiovasular emergency department visits., " Epedemiology, Vol. 15,pp.46-56(2004) Nicolas, J., M. Chiari, J. Crespo, I. Orellana, F. Lucarelli, S. Nava, C. Pastor, and E. Yubero, "Quantification of Saharan and local dust impact in an arid Mediterranean area by the positive matrix factorization (PMF) technique," Atmospheric Environment, vol. 42, No. 39, pp. 8872-8882 (2008) Ogulei, D., P. K. Hopke, L. Zhou, P. Paatero, S. S. Park, and J. M. Ondov, "Receptor modeling for multiple time resolved species: The Baltimore supersite," Atmospheric Environment, vol. 39, No. 20, pp. 3751-3762 (2005) Okuda, T., M. Katsuno, D. Naoi, S. Nakao, S. Tanaka, K. He, Y. Ma, Y. Lei, and Y. Jia, "Trends in hazardous trace metal concentrations in aerosols collected in Beijing, China from 2001 to 2006," Chemosphere, vol. No. pp. (2008) Paatero, P., "The multilinear engine: a table-driven, least squares program for solving multilinear problems, including the n-way parallel factor analysis model," Journal of Computational and Graphical Statistics, vol. 8, No. 4, pp. 854-888 (1999) Paatero, P., "Least squares formulation of robust non-negative factor analysis," Chemometrics and Intelligent Laboratory Systems, vol. 37, No. 1, pp. 23-35 (1997) Paatero, P. and U. Tapper, "Positive matrix factorization: A non-negative factor model with optimal utilization of error estimates of data values," Environmetrics, vol. 5, No. 2, pp. 111-126 (1994) Reddy, M., S. Basha, H. Joshi, and B. Jha, "Evaluation of the emission characteristics of trace metals from coal and fuel oil fired power plants and their fate during combustion," Journal of hazardous materials, vol. 123, No. 1-3, pp. 242-249 (2005) Santoso, M., P. Hopke, A. Hidayat, and L. Diah Dwiana, "Sources identification of the atmospheric aerosol at urban and suburban sites in Indonesia by positive matrix factorization," Science of The Total Environment, vol. 397, No. 1-3, pp. 229-237 (2008) Smichowski, P., D. Gomez, C. Frazzoli, and S. Caroli, "Traffic-Related Elements in Airborne Particulate Matter," Applied Spectroscopy Reviews, vol. 43, No. pp. 23-49 (2008) U.S.EPA , "Receptor Model Source Composition Library", Environmental Protection Agency Research Triangle Park,NC., EPA-450/4-85-002(1984) Vestenius, M., S. Leppänen, P. Anttila, K. Kyllönen, J. Hatakka, H. Hellén, A.-P. Hyvärinen, and H. Hakola, "Background concentrations and source apportionment of polycyclic aromatic hydrocarbons in south-eastern Finland," Atmospheric Environment, vol. In Press, Corrected Proof, No. pp. Watson, J., J. Cooper, and J. Huntzicker, "The effective variance weighting for least squares calculations applied to the mass balance receptor model," Atmospheric Environment (1967), vol. 18, No. 7, pp. 1347-1355 (1984) Xie, Y. and C. M. Berkowitz, "The use of conditional probability functions and potential source contribution functions to identify source regions and advection pathways of hydrocarbon emissions in Houston, Texas," Atmospheric Environment, vol. 41, No. 28, pp. 5831-5847 (2007) Yatkin, S. and A. Bayram, "Source apportionment of PM10 and PM2.5 using positive matrix factorization and chemical mass balance in Izmir, Turkey," Science of The Total Environment, vol. 390, No. 1, pp. 109-123 (2008) Zheng, M., D. R. Kester, F. Wang, X. M. Shi, and Z. G. Guo, "Size distribution of organic and inorganic species in Hong Kong aerosols during the wet and dry seasons," Journal of Geophysical Research-Atmospheres, vol. 113, No. D16, pp. (2008) 蔣本基、楊末雄、王竹方、張勝祺、魏耀揮、周仲島、望熙榮、鄭曼婷、詹長權、王秋森、杜悅元等,「台灣北、中部地區受體模式建立與應用研究(一)」,行政院環境保護署報告,EPA-82-E3F1-09-01 ,(1993) 黃慕欣,「台灣三重、麥寮與林園三地區大氣中懸浮微粒及微粒源化學組成之探討」, 碩士論文, 國立台灣大學環境工程研究所,台北,(1996) 李惠敏,「硫酸鹽與硝酸鹽在受體模式中之探討」,碩士論文,國立中興大學環境工程研究所,台中,(2003) 曠永銓.許珮蒨, 「AERMOD煙流模式在台灣地區之應用研究」. 中興工程,vol 88.2005,pp.55-62 梁志峰,「受體模式CMB與PMF之比較與驗證」,碩士論文,國立中興大學環境工程研究所,台中,(2006) 謝宏益,「擴散模式ISC與AERMOD之比較」,碩士論文,國立中興大學環境工程研究所,台中,(2007) 王富民,「利用CMB與PMF模式針對不同共線性程度之污染源的分析與比較」,碩士論文,國立中興大學環境工程研究所,台中,(2007) 許美華,「應用CMB受體模式解析中台灣沿海與都會區空氣懸浮微粒污染來源」,碩士論文,國立中興大學環境工程研究所,台中,(2008) 張馥驛,「應用CALMET地表能量平衡方程式計算大氣擴散穩定度對ICS模擬結果的影響」,碩士論文,國立中興大學環境工程研究所,台北,(2008) 蔡宏杰,「受體模式PMF解析中部地區揚塵來源之共線性」,碩士論文,國立中興大學環境工程研究所,台中,(2009) 藍威麟,「受體模式PMF模擬結果之探討」,碩士論文,國立中興大學環境工程研究所,台中,(2010)
摘要: 受體模式PMF(Positive Matrix Factorization)可以判斷出各污染源和各污染源的貢獻量,使用條件機率函數CPF(Conditional probability functions)可以找出污染源方位,用以驗證PMF結果是否正確。CPF有三個定向因子,(1)定義貢獻量的臨界值。(2)限制靜風狀況下的樣本。(3)污染源傳輸至受體點為直線傳輸。本研究目的將以模擬樣本來討論CPF對定向污染源之能力,模擬樣本的製作使用高斯擴散模式AERMOD(AMS/EPA REGULATORY MODEL),模擬時間為2005年四月份,30天(每天每小時一筆樣本),樣本數共720筆。 本篇內容將討論CPF的參數設定、誤差原因和改良方法,完成了以下討論。(1)CPF臨界值的定義,在風向區間(wind sector)每10度和每22.5度做一間隔下,討論臨界值設定百分位數25、百分位數50、百分位數75和百分位數85對污染源定向性的能力,結果以百分位數85當做臨界值時,判斷能力最好。(2)PMF模式貢獻量的分配,貢獻量小的污染源會被貢獻量大的污染源影響而高估,導致CPF結果不準確。(3)篩選靜風條件下的樣本中,以靜風條件分別為風速小於0.3m/s、1.0m/s和1.5m/s下,對CPF定向性的影響,研究結果建議靜風條件為風速小於1.0m/s,CPF判斷能力較好。(4)篩選出該區域風向一致的時間點下之樣本才為有效樣本,用以減少污染源非直線傳輸的影響,本研究結果也顯示出篩選後之CPF圖結果可以更有效的指出污染源方位。
A receptor model of positive matrix factorization (PMF) was used to identify the emission sources and contribution of sources. The results were compared with the previous source apportionment results. Conditional Probability Function (CPF) plots were developed for each source using local wind data to explore the directionality of local sources. To use CPF had to define three factors of source location (1) to find a threshold criterion value of the contribution. (2) to define calm wind. (3) the air arriving at a receptor site has traveled a relatively straight path from the source. This research purpose will discuss ability of CPF to location sources by simulation aerosol compositional simples. Making of the simulation sample used dispersion model “AERMOD”(AMS/EPA REGULATORY MODEL). The simulation was carried in April, 2005 with 720 samples. The result included set up CPF parameter, error reason of CPF plot and how to improve CPF. (1). ability of CPF of location source when the critical value used 25th percentile、50th percentile、75th percentile and 85th percentile that wind sector used 10° and 22.5°. Ability of location source was better than others when critical value used 85th percentile. (2). value of small contribution will be influenced and over-evaluated by value of big contribution to cause inaccurate CPF plot. (3). the clam wind chooses the wind speed to be smaller than 0.3m/s、1.0m/s and 1.5m/s to select samples. Ability of location source was better than others when clam wind used 1.0m/s. (4).the “effective sample” is defined as the sample under the time point of wind direction with small deference. To define “effective sample” can reduce influence that air arriving at a receptor site has traveled a non-straight path from the source. The result can improve ability of CPF of location source.
URI: http://hdl.handle.net/11455/4984
其他識別: U0005-1108201118231300
文章連結: http://www.airitilibrary.com/Publication/alDetailedMesh1?DocID=U0005-1108201118231300
Appears in Collections:環境工程學系所

文件中的檔案:

取得全文請前往華藝線上圖書館

Show full item record
 
TAIR Related Article
 
Citations:


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.