Please use this identifier to cite or link to this item:
標題: 二氧化鈦/奈米碳管複合薄膜應用於過濾水中苯、甲苯、乙苯及二甲苯之研究
A study on BTEX removal by titainium dioxide/carbon nanotubes composite membrane
作者: 戴婕卉
Tai, Chieh-Hui
關鍵字: Carbon nanotubes
Titanium dioxide
Composite membrane
出版社: 環境工程學系所
引用: 1.中文部分 王秀文,2006,陽離子對薄膜有機積垢之影響,碩士論文,國立交通大學環境工程研究所,新竹。 宋昭瑩,2008,鈣離子對 UF 薄膜有機積垢之影響,碩士論文,國立交通大學環境工程研究所,新竹。 張永信,2008,薄膜程序用於工業區廢水回收之研究,碩士論文,國立成功大學環境工程系,台南。 行政院環境保護署,毒性化學物質災害防救查詢系統,物質安全資料表。 行政院環境保護署,地下水污染管制標準,中華民國100 年2月10日行政院環境保護署環署土字第1000010141 號令修正發布第四條條文。 行政院環境保護署,2006,油品類儲槽系統土壤及地下水污染整治技術選取、系統設計要點與注意事項參考手冊。 2.西文部分 Afonso M. D. and Borquez, R. (2003) “Nanofiltration of wastewaters from the fish meal industry”, Desalination, Vol. 151, pp. 131–138. Alkhatim, H. S., Alcaina, M. I., Soriano, E., Iborra, M. I., Lora, J. and Arnal, J., (1998) “Treatment of whey effluents from dairy industries by nanofiltration membranes”, Desalination, Vol. 119, pp. 177–184. Alpatova, A., Verbych, S., Bryk, M., Nigmatullin, R. and Hila, N. (2004). “Ultrafiltration of water containing natural organic matter: heavy metal removing in the hybrid complexation–ultrafiltration process”, Separation and Purification Technology, Vol. 40, pp. 155–162. Antoine, B., Balmann, R. D. and Lutin, F. (2006) “Evaluation of nanofiltration for the purification of an organic acid fermentation broth”, Separation and Purification Technology, Vol. 52 (2), pp.266–273. Baker, R. W. (2004) Membrane technology and applications, pp. 273–280. John Wiley and Sons. Barfknecht, S. (1999) “Method and device for separation of metal ions from contaminated wash water”, Ger. Offen. DE 19729493, Barrett, E. P., Joyner, L.G. and Halenda, P. P. (1951) “The Determination of Pore Volume and Area Distributions in Porous Substances. I. Computations from Nitrogen Isotherms”, American Chemical Society, Vol. 73, pp. 373–880. Benavente, J. and G. Jonsson, (1994) “Effect of pressure on some parameters measure with composite and porous membranes”, Separation Science and Technology, Vol. 29, pp. 1705–1717. Boricha, A. G. and Murthy, Z. V. P. (2009) “Preparation, characterization and performance of nanofiltration membranes for the treatment of electroplating industry effluent”, Separation and Purification Technology, Vol. 65 (3), pp. 282–289. Braghetta, A. Digiano, F. A. and William, P. B. (1997). “Nanofiltration of natural organic matter: pH and ionic strength effects”, Journal of Environmental Engineering, Vol. 123 (7), pp. 628–641. Bruggen, B. V., Everaert, K., Wilms, D. and Vandecasteele, C. (2001) “Application of nanofiltration for removal of pesticides, nitrate and hardness from ground water: rejection properties and economic evaluation”, Journal of Membrane Science, Vol. 193 (2), pp. 239–248. Bruggen, B. V. (2009) Chemical modification of polyethersulfone nanofiltration membranes: A review, Journal of Applied Polymer Science, Vol. 114, pp. 630–642. CEU (1998) Council of the European Union. Council Directive 98/83/EC on the Quality of Water Intended for Human Consumption. Chakraborty, S., De, S., Basu, J. K. and S. DasGupta, (2005) “Treatment of a textile effluent: application of a combination method involving adsorption and nanofiltration”, Desalination, Vol. 174 (1), pp. 73–85. Chang, J. S., Tsai, L. J. and Vigneswaran, S. (1996) “Experimental investigation of the effect of particle size distribution of suspended particles on microfiltration”, Water Science and Technology, Vol. 34, pp. 133–140. Garcia-Castello, E., Cassano, A., Criscuoli, A., Conidi, C. and Drioli, E.(2010) “Recovery and concentration of polyphenols from olive mill wastewaters by integrated membrane system”, Water research, Vol. 44, pp. 3883–3892. Chen, S. S., Hsua, B. C., Kob, C. H. and Chuang, P. C. (2008) “Recovery of chromate from spent plating solutions by two-stage nanofiltration processes”, Desalination, Vol. 229 (1), pp. 147–155. Cheryan, M. (1998) Ultrafiltration and Microfiltration Handbook, Technomic Pub. Co. Cho, J., Amy, G. and Pellegrino, J. (1999) “Membrane filtration of natural organic matter: initial comparison of rejection and flux decline characteristics with ultrafiltration and nanofiltration membranes”, Water Resources,Vol. 33 (11), pp. 2517–2526. Cui, Z. F. and Muralidhare, H. S. (2010) Membrane technology. Elsevier Ltd., Burlington, USA. Cui, P., Zhao, X., Zhou, M. and Wang, L. (2006) “Photocatalysis membrane separation coupling reactor and its application”, Chinese Journal of Catalysis, Vol. 27(9), pp. 752–754. Damodara, R. A., Youa, S. J. and Chou, H. H. (2009) “Study the self cleaning, antibacterial and photocatalytic properties of TiO2 entrapped PVDF membranes”, Journal of Hazardous Materials, Vol. 172, pp.1321–1328. Danziger, R. S., (1997) “Purification of Liquids Contaminated by Filamentary Molecules”, PCT WO 9723279, Darvishmanesh, S., Robberecht, T., Luis, P., Degre`ve, J. B. and Bruggen, V. D. (2011) “Performance of nanofiltration membranes for solvent purification in the oil industry”, Journal of the American Oil Chemists'' Society (JAOCS), Vol. 88, pp.1255–1261. Drioli, E. and Giorno, L. (2009) Membrane Operations. Wiley-Vch Verlag Gmbh & Co. KGaA, Weinheim, Germany. Durham, J., Hourigan, J. A., Sleigh, R. W. and Johnson, R. L. (1999) “Process for recycling of nutrients from food process streams”, PCT WO9904903. Escobar, I. C., Hong, S. and Randall, A. A. (2000) “Removal of assimilable organic carbon and biodegradable dissolved organic carbon by reverse osmosis and nanofiltration membranes”, Journal of Membrane Science, Vol. 175, pp. 1–17. Eva, S. D. and Martin, R. (2008) “Nanofiltration for trace organiccontaminant removal: structure, solution, and membrane foulingeffects on the rejection ofperfluorochemicals”, Environmental Science and Technology, Vol. 42, pp. 5292–5297. Fu, F., Ji, M., Wang, Z., Jin, L. and An, D. (2006)“ A new submerged membrane photocatalysis reactor (SMPR) for fulvic acid removal using a nano-structured photocatalyst”, Journal of Hazardous Materials, Vol. 131, pp. 238–242. Geraldes, V., M. Pinho, N. D. (1995) “Process water recovery from pulp bleaching effluents by an NF/ED hybrid process”, Journal of Membrane Science, Vol. 102, pp. 209–221. Hagg, M. B. (1998) “Membranes in chemical processing. A review of applications and novel developments”, Separation and Purification Methods, Vol. 27, pp. 51–168. Hakimzadeh, Vahid., Razavi, S. M. A., Piroozifard, M. K. and Shahidi, M. (2006) “The potential of microfiltration and ultrafiltration process in purification of raw sugar beet juice”, Desalination, Vol. 200, pp. 520–522. Hoffmann, A., Kummel, R., Tschernjaew, J. and Weinspach, P. M. (1997) “Generation of supersaturations in nanofiltration: determination of dimensioning data for a new crystallization process”, Chemie Ingenieur Technik, Vol. 69(6), pp. 831–833. Holt, J. K., Park, H. G., Wang, Y., Stadermann, M., Artyukhin, A. B., Grigoropoulos, C. P., Noy, A. and Bakajin, O. (2006) “Fast mass transport through sub-2-nanometer carbon nanotubes”, Science, Vol. 312, pp. 1034–1037. Hong, S. U. and Bruening M. L. (2006) “Separation of amino acid mixtures using multilayer polyelectrolyte nanofiltration membranes”, Journal of Membrane Science, Vol. 280 (1), pp. 1–5. Hsieh, H. P., (1996) Inorganic membranes for separation and reaction, Elsevier Water industry, Membrane filtration and Desalination technology. The Netherlands. Huang, X., Meng, Y., Liang, P. and Qian, Y. (2007) “Operational conditions of a membrane filtration reactor coupled with photocatalytic oxidation”, Separation and Purification Technology, Vol, 55(2), pp. 165–172. Jeshi, S. A. and Neville, A. (2006) “An investigation into the relationship between flux and roughness on RO membranes using scanning probe microscopy”, Desalination, Vol. 189, pp. 221–228. Jiang, H, B., Zhang, G. L., Huang, T., Chen, J., Wang, Q. and Meng, Q. (2010) “Photocatalytic membrane reactor for degradation of acid red B wastewater”, Chemical Engineering Journal, Vol. 156, pp. 571–577. Johannes M. K. T, (2001) “Properties of Nanofiltration Membranes:Model Development and Industrial Application”, Eindhoven: Technische Universiteit Eindhoven. Jung, J. T., Kim, J. O. and Choi, W. Y. (2007) “Performance of photocatalytic microfiltration with hollow fiber membrane”, Materials Science Forum, Vol. 544, pp. 95–98 Kharaka, Y. K., Ambats, G., Presser, T. S. and Davis, R. A. (1996) “Removal of selenium from contaminated agricultural drainage water by nanofiltration membranes”, Applied Geochemistry, Vol.11 (6), pp. 797–802. Kotsalis, E. M., Walther, J. H. and Koumoutsakos, P. (2004) “Multiphase water flow inside carbon Nanotubes”, International Journal of Multiphase Flow, Vol. 30, pp. 995–1010. Kwok, D.Y. and Neumann, A. W. (1999) “Contact angle measurement and contact angle interpretation”, Advances in Colloid and Interface Science, Vol. 81, pp. 167–249. Lu, C. S., Su, F. S. and Hu, S. k (2008) “Surface modification of carbon nanotubes for enhancing BTEX adsorption from aqueous solutions”, Applied Surface Science, Vol. 254(21), pp. 7035–7041. Lin, K. F. (1998) “Bromide separation and concentration using semipermeable membranes”, US 5158683, Lin, Y. L., Chiang, P. C. and Chang, E. E. (2006) “Reduction of disinfection by-products precursors by nanofiltration process”, Journal of Hazardous Materials, Vol. 137(1), pp. 324–331. Luo, M. L., Zhao, J. Q., Tang, W. and Pu, C. S. (2005) “Hydrophilic modification of poly (ether sulfone) ultrafiltration membrane surface by self-assembly of TiO2 nanoparticles”, Applied Surface Science, Vol. 249, pp. 76–84. Lyonnaise, D. E. (1996) “Water Treatment Membrane Process”, American Water Works Associaition. McGraw Hill. Mansourpanah, Y., Madaeni, S. S., Rahimpour, A., Farhadian, A. and Taheri, A. H. (2009) “Formation of appropriate sites on nanofiltration membrane surface for binding TiO2 photo-catalyst: Performance, characterization and fouling-resistant capability”, Journal of Membrane Science, Vol. 330, pp. 297–306. Manttari, M., Pihlajamaki, A., Kaipainen, E and Nystrom, M. (2002) “Effect of temperature and membrane pre-treatment by pressure on the filtration properties of nanofiltration membranes”, Desalination, Vol. 145, pp. 81–86. Mijatović, I., Matošic, M., Černeha, B. H. and Bratuli, D. (2004) “Removal of natural organic matter by ultrafiltration and nanofiltration for drinking water production”, Desalination, Vol. 169 (3) , pp. 223–230. Miyauchi, M., Kieda, N., Hishita, S., Mitsuhashi, T., Nakajima, A., Watanabe, T. and Hashimoto, K. (2002) “Reversible wettability control of TiO2 surface by light irradiation”, Surface Science, Vol. 511 (1), pp. 401–407. Mohammada, A. W., Othamana, R. and Hilalb, N. (2004) “Potential use of nanofiltration membranes in treatment of industrial wastewater from Ni-P electroless plating”, Desalination, Vol. 168, pp. 241–252. Molinari, R., Palmisano, L., Drioli, E. and Schiavello, M. (2002) “Studies on various reactor configurations for coupling photocatalysis and membrane processes in water purification”, Journal of Membrane Science, Vol. 206, pp. 399–415. Molinari, R., Pirillo, F., Loddo, V. and Palmisano, L. (2006) “Heterogeneous photocatalytic degradation of pharmaceuticals in water by using polycrystalline TiO2 and a nanofiltration membrane reactor”, Catalysis Today, Vol. 118(1), pp. 205–213. Molinari, Pirillo, R. F., Falco, M., Loddo, V. and Palmisano, L.(2004) “Photocatalytic degradation of dyes by using a membrane reactor”, Chemical Engineering and Processing, Vol. 43, pp. 1103–1114. Nath, K., (2008) Membrane Separation Process, Prentice-Hall Ltd., New Delhi, India. pp. 22–30. Ortega, L. M., Lebrun, R., Noelc, I. M. and Hauslera, R. (2005) “Application of nanofiltration in the recovery of chromium (III) from tannery effluents”, Separation and Purification Technology, Vol. 44 (1), pp. 45–52. Padilla, A. P. and Saitua, H. (2010) “Performance of simultaneous arsenic, fluoride and alkalinity (bicarbonate) rejection by pilot-scale nanofiltration”, Desalination, Vol. 257 (1–3), pp. 16–21. Peng, W. and Escobar, I. C. (2003) “Rejection efficiency of water quality parameters by reverse osmosis and nanofiltration membranes”, Environmental Science and Technology, Vol. 37, pp. 4435-4441. Prabhavathy, C. (2011) “Modeling and transport parameters during nanofiltration of degreasing effluent from a tannery”, Asia-Pacific Journal of Chemical Engineering, Special Issue: Festschrift in Honor of Professor Nabil Esmail, Vol. 6(1), pp. 101–109. Purdon, A. D., Tinker, D. O. and Neumann, A. W. (1980) “The temperature dependence of surface tension and critical micelle concentration of egg lysolecithin”, Colloid and Polymer Science, Vol. 258, pp. 1062–1069. Qiu, S., Wu, L., Pan, X., Zhang, L., Chen, H. and Gao, C. (2009) “Preparation and properties of functionalized carbon nanotube/PSF blend ultrafiltration membranes”, Journal of Membrane Science, Vol. 342, pp. 165–172. Rahimpour, A., Madaeni, S. S., Taheri, A. and Mansourpanah, H. Y. (2008) “Coupling TiO2 nanoparticles with UV irradiation for modification of polyethersulfone ultrafiltration membranes”, Journal of Membrane Science, Vol. 313, pp. 158–169. Roy, S., Ntim, S. A., Mitra, S. and Sirkar, K. K. (2011) “Facile fabrication of superior nanofiltration membranes from interfacially polymerized CNT-polymer composites”, Journal of Membrane Science, Vol. 375, pp. 81–87. Sarasidis, V. C., Patsios, S. I. and Karabelas, A. J. (2011) “A hybrid photocatalysis-ultrafiltration continuous process for polysaccharide degradation”, Panhellenic Conference in Chemical Engineering, Vol. 80, pp. 1–12. Savage, N., Diallo, M., Duncan, J., Street, A. and Sustich, R. (2009) Nanotechnology Application for Clean Water. William Andrew Inc. New York, USA. pp. 77–88. Schaefer, T., Gross, R., Janitza, J. and Trauter, J. (1999) “Nanofiltration of dye wastewater”, Filtration & Separation, pp. 9–16. Sharma, R. R. and Chellam, S. (2006) “Temperature and concentration effects on electrolyte transport across porous thin-film composite nanofiltration membranes: Pore transport mechanisms and energetics of permeation”, Journal of Colloid and Interface Science, Vol. 298 (1), pp. 327–340. Song, L. (1998) “Flux decline in crossflow microfiltration and ultrafiltration: mechanisms and modeling of membrane fouling”, Journal of Membrane Science, Vol. 139, pp. 183–200. Thiruvenkatachari, R., Kwon, T. O. and Moon, I. S. (2005) “Application of photocatalytic oxidation‐submerged hollow fiber microfiltration hybrid system for the degradation of Bisphenol-A (BPA)”, Separation Science and Technology, Vol. 40, pp. 2871–2888. Tsuru, T., Shutou, T., Nakao, S. and Kimura, S. (1994) “Peptide and amino-acid separation with nanofiltration membranes”, Separation Science and Technology, Vol. 29(8), pp. 971–984. Tsuru, T., Izumi, S., Yoshioka, T. and Asaeda, M. (2000) “Temperature effect on transport performance by inorganic nanofiltration membranes”, AIChE journal, Vol. 46 (3), pp. 565–574. Vatanpour, V., Madaeni, S. S., Moradian, R., Zinadini, S. and Astinchap, B. (2011) “Fabrication and characterization of novel antifouling nanofiltration membrane prepared from oxidized multiwalled carbon nanotube/polyethersulfone nanocomposite”, Journal of Membrane Science, Vol. 375 (1), pp. 284–294. Vellenga, E. and Tragardh, G., (1998) “Nanofiltration of combined salt and sugar solutions: coupling between retentions”, Desalination, Vol. 120, pp. 211–220. Vrijenhoek, E. M., Hong, S. k. and Elimelech, M. (2001) “Influence of membrane surface properties on initial rate of colloidal fouling of reverse osmosis and nanofiltration membranes”, Journal of Membrane Science, Vol. 188, pp. 115–128. Wang, L. K., Chen, J. P., Hung, Y. T. and Shammas, N. K. (2010) Membrane and Desalination Technologies, New York, USA. Warczok, J., Ferrando, M., Lopez, F. and Guell, C., (2004) “Concentration of apple and pear juices by nanofiltration at low pressures”, Journal of Food Engineering, Vol. 63 (1), pp. 63–70. Wolters, R., Wendler, B., Schmidt, B., Holdinghausen, A. and Prade, H. (2008) “Rinsing water recovery in the steel industry –a combined UF/NF treatment”, Desalination, Vol. 224, pp. 209–214. Wong, F. S., Qin, J. J., Wai, M. N., Lim A. L. and Adiga, M. (2002) “A pilot study on a membrane process for the treatment and recycling of spent final rinse water from electroless plating”, Separation and Purification Technology, Vol. 29, pp. 41–51.
摘要: 本研究以奈米碳管(carbon nanotubes, CNTs)薄膜(CPMs)以及二氧化鈦(titanium oxide, TiO2)/CNTs複合薄膜(T-CPMs)進行水中苯、甲苯、乙苯、二甲苯(簡稱BTEX)過濾實驗,並於T-CPMs過濾時額外加入UV光照以降解過濾期間產生的積垢,使其成為具自淨功能之薄膜。研究中針對CNTs、TiO2複合材料之比例與操作壓力、溫度、初始濃度以及水中離子強度對去除率及通量比的影響進行討論。 研究結果顯示,CPMs中以10% CNTs含量(10-CPM)對BTEX之去除率最佳(皆大於81%)且過濾通量為10.21 L/m2-h。T-CPMs中以1% TiO2複合5% CNTs(T-5-CPM)對BTEX之去除率最佳(皆大於93%),且經由UV光照後通量比從0.8回復至1.1,顯示T-5-CPM具高去除率與自淨之特性。以5-40 psi操作壓力範圍對10-CPM及T-5-CPM進行測試,當操作壓力為10 psi時,BTEX去除率皆大於80%以上,並保有較高的通量(9.28與6.22 L/m2-h)。不同溫度測試結果顯示溫度上升有助於通量的提升,但會使BTEX去除率下降。BTEX初始濃度增加會造成去除率與通量比下降,此因高濃度時會使分子擴散現象較顯著,同時薄膜表面積垢速率加快,而使通量比下降。離子強度的影響中,以100 mM NaCl 對去除率與通量比影響較大,此因水中離子會累積於膜孔與膜面所致。以10-CPM與T-5-CPM同時過濾BTEX混合溶液,於個別物質濃度為20與80 mg/L條件下,其去除率皆達80%以上,而大小順序則以X≅E>T>B,顯示大分子物質較具競爭優勢。 T-5-CPM於不同條件下過濾並同時進行UV光降解表面積垢,結果顯示溫度與通量比成正比,於30 oC時通量比由0.8回復至1.3。而通量比則與濃度及離子強度成反比。當水中BTEX濃度與離子強度增加時,薄膜積垢累積速率亦隨之增加,且離子並無法被UV降解所致。BTEX同時過濾實驗中,通量比經UV光照後皆可有效回升至0.9以上,顯示UV光照可使通量回升,有效解決薄膜阻塞問題以省略反沖洗的步驟。綜合以上研究結果,CPMs與T-CPMs兩種薄膜皆有效去除水中BETX,此兩種薄膜於實廠上可用於處理水中有機物,可見其應用具有相當的發展潛力。
Carbon nanotubes (CNTs) membranes (CPMs) and titanium dioxide (TiO2)/CNTs compositied membranes (T-CPMs) were prepared to study their separation performance of organic matters (benzene, toluene, ethylbenzene, xylene, abbreviated as BTEX) in an aqueous solution. UV irradiation on T-CPMs led to the photocatalytic degradation of organic pollutants, which are accumulating on the membrane surface during filtration (self-cleaning). The influence of rejection and flux ratio under different conditions, such as ratio of composite, pressure, temperature, initial concentration and ionic strength were all conducted. The 10% content in CPMs (10-CPM) shows great rejection and flux, which was the optimum ratio. The 1% TiO2 with 5-CPM (T-5-CPM) possesses good rejection of BTEX, and flux ratio increased from 0.8 to 1.1 with UV irradiation. The results exhibit that rejection of 10-CPM and T-5-CPM were both above 80% under 10 psi where the flux was 9.2 8and 6.22 L/m2-h. The temperature effects indicate that increased temperature with increased flux ratio but decreased rejection. The results show an increasing concentration with decreased rejection and flux ratio which caused by the diffusion rate and fouling rate are more quickly than the lower concentration. The simultaneously experiments were carried out by 10-CPM and T-5-CPM. It shows excellent separation performance for BTEX removal from aqueous solution where rejection was up to 80%. The order of rejection is X≅E>T>B due to large molecules have competitive advantage. The influences of flux ratio for T-5-CPM with UV irradiation which display that flux ratio increased efficiently with increased temperature, moreover, it demonstrated that self-cleaning characteristic of membrane could be improved under high temperature. The results show that flux ratio was inversely proportional to initial concentration and ionic strength which caused by increased fouling rate and undegradable ions. The simultaneous experiments shows that flux ratio grow up to 0.9 with UV irradiation which exhibits fouling could be efficiently photodegradated. From the foregoing results, both of 10-CPM and T-5-CPM have good efficiency for BTEX removal. Therefore, these two types of membranes appear promising technologies for wastewater treatment.
其他識別: U0005-1306201200083600
Appears in Collections:環境工程學系所



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.