Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/5024
標題: 高脂質累積潛力微藻之分離及利用廢水產生生質柴油之可行性研究
Isolation of the high lipid accumulating microalgae and the feasibility of utilizing wastewater to produce biodiesel
作者: 孫鶴娟
Sun, He-Chuan
關鍵字: micralga
微藻
biodiesel
lipid
生質柴油
脂質
出版社: 環境工程學系所
引用: Abeliovich, A. and Azov, Y. Toxicity of Ammonia to Algae in Sewage Oxidation Ponds. Applied and Environmental Microbology, 31 (1976) 6, 801-806. Arisz, S.A., Van Himbergen JAJ, Musgrave, A., Van Den Ende H, Munnik, T. Polar glycerolipids of Chlamydomonas moewusii. Phytochemistry. 53 (2000) 265-70. Bligh, E. G. and Dyer, W.J.. A rapid method for total lipid extraction and purification. Candian Journal of Biochemistry and Physiology. 37 (1959) 911-917 Becker, E.W. Microalgae: biotechnology and microbiology. Cambridge University Press. 1994 Brown, M.R., Dunstan, G.A., Norwood, S.J., Miller, K.A. Effects of harvest stage and light on the biochemical composition of the diatom Thalassiosira pseudonana. Journal of Phycology 32 (1996) 64–73 Bae, S., Kwak K., Kim, S., Chung, S., Igarashi, Y. Isolation and Characterization of CO2-Fixing Hydrogen-Oxidizing Marine Bacteria. Journal of Bioscience and Bioengineering. 91 (2001) 5, 442-448. Behzadi, S., Farid, M.M., Review: examining the use of different feedstock for the production of biodiesel. Asia Pacific Journal of Chemical Engineering. 2 (2007) 480-486. Comeau, Y., Hall, K.J., Hancock, R.E.W., Oldham, W.K. Biochemical model for enhanced biological phosphorus removal. Water research. 20 (1986) 1511-1521. Collos, Y., Mornet, F., Sciandra, A., Waser, N., Larson, A., Harrison, P.J. An optical method for the rapid measurement of micromolar concentrations of nitrate in marine phytoplankton cultures. Journal of Applied Phycology, 11 (1999) 179-184. Carvalho, A.P. and Malcata, F.X. Optimization of w-3 fatty acid production by microalgae: crossover effects of CO2 and light intensity under batch and continuous cultivation modes. Marine Biotechnology. 7 (2005) 381-388. Chisti, Y. Biodisel from microalgae. Biotechnology advances. 25 (2007) 294-306. Chiu, S.Y., Kao, C.Y., Chen, C.H., Kuan, T.C., Ong, S.C., Lin, C.S. Reduction of CO2 by a high-density culture of Chlorella sp. in a semicontinuous photobioreactor. Bioresource Technology. 99 (2008) 3389-3396. Chiu, S.Y., Kao, C.Y., Tsai, M.T., Ong, S.C., Chen, C.H., Lin, C.S. Lipid accumulation and CO2 utilization of Nannochloropsis oculata in response to CO2 aeration. Bioresource Technology. 100 (2009) 833-838. Chinnasamy S., Bhatnagar, A., Hunt, R.W., Das, K.C.. Microalgae cultivation in a wastewater dominated by carpet mill effluents for biofuel applications. Bioresource Technology. 101 (2010) 3097-3105. Cheirsilp, B., Suwannarat, W. and Niyomdecha, R. Mixed culture of oleaginous yeast Rhodotorula glutinis and microalga Chlorella vulgaris for lipid production from industrial wastes and its use as biodiesel feedstock. New Biotechnology 2011 Dayanada, C., Sarada, R., Rani, U. M., Shamala, T.R., Ravishankar, G.A. Autotrophic cultivation of Botryococcus braunii for the production of hydrocarbons and exopolysaccharides in various media. Biomass and Bioenergy 31 (2007) 87-93 Fowler, S.D., Brown, W.J., Warfel, J., Greenspan, P. Use of Nile Red for the rapid in situ quantitation of lipids on thin-layer chromatograms. Journal of Lipid Research. 28 (1979) 1225-1232. Grobbelaar, J.U. Do light/dark cycles of medium frequency enhance phytoplankton productivity. Journal of Applied Phycology 1 (1989) 333-340 Grobbelaar. J.U. The influence of light/dark cycles in mixed algal cultures on their productivity. Bioresource Technology. 38 (1991) 189-194. Guschina, I. A. and Harwood, J. L. Lipids and lipid metabolism in eukaryotic algae. Progress in Lipid Research 45 (2006) 160-186. Griffiths, M.J. and Harrison, S.T.L., Lipid productivity as a key characteristic for choosing algal species for biodiesel production. Journal of Applied Phycology 21 (2009) 493-507. Hoshida, H., Ohira, T., Minematsu, A., Akada, R., Nishizawa, Y., Accumulation of eicosapentaenoic acid in Nannochloropsis sp. In response to elevated CO2 concentrations. Journal of Applied Phycology 17 (2005) 29-34. Huang, G.H., Chen, F., Wei, D., Zhang, X.W., Chen, G. Biodiesel production by microalgal biotechnology. Applied Energy 89(2010)38-46 Jiang, H.M. and Gao, K.S. Effects of lowering temperature during culture on the production of polyunsaturated fatty acids in the marine diatom Phaeodactylum tricornutum (Bacillariophyceae). Journal of Phycology 40 (2004) 651-654 Jiang, L., Luo, S., Fan, X., Yang, Z., Guo, R. Biomass and lipid production of marine microalgae using municipal wastewater and high concentration of CO2. Applied Energy 88 (2011) 3336-3341 Kodama, M., Ikemoto, H., Miyachi, S. A new species of highly CO2-tolerant fast growing marine microalga suitable for high density culture. Journal of Marine Biotechnology 1(1993) 21-25 Kong, Q.X., Li, L., Martinez, B., Chen, P., Ruan, R. Culture of Microalgae Chlamydomonas reinhardtii in Wastewater for Biomass Feedstock Production. Applied Biochemistry and Biotechnology. 160 (2010) 9-18 Lopes, E.J., Scoparo, C.H.G., Lacerda, L.M.C.F., Franco, T.T. Effect of light cycles (night/day) on CO2 fixation and biomass production by microalgae in photobioreactors. Chemical Engineering and Processing 48 (2009) 306–310 Lv, J.M., Cheng, L.H., Xu, X.H., Zhang, L., Lin, H. Enhanced lipid production of Chlorella vulgaris by adjustment of cultivation conditions. Bioresource Technology 101 (2010) 6797-6804. Li, Y., Han, D., Sommerfeld, M., Hu, Q. Photosynthetic carbon partitioning and lipid production in the oleaginous microalga Pseudochlorococcum sp. (Chlorophyceae) under nitrogen-limited conditions. Bioresource Technology (2010) Melis, A., Neidhardt, J., Benemann, J.R. Dunaliella salina (Chlorophyta) with small chlorophyll antenna sizes exhibit higher photosynthetic productivities and photon use efficiencies than normally pigmented cells. Journal of Applied Phycology 10 (1999) 515-525 Madigan, M.T., Dunlap, P.V., Martinko, J.M., Clark D.P. Brock biology of microorganisms, 12th Edition (2008) 591-93. Mutanda, T., Ramesh, D., Karthikeyan, S., Kumari, S., Anandraj, A., Bux, F. ,Bioprospecting for hyper-lipid producing microalgal strains for ustainable biofuel production. Bioresource Technology. 102 (2011) 57-70 Mata, T.M., Martins, A.A., Caetano, N.S. Microalgae for biodiesel production and other applications: A review. Renewable and sustainable Energy Reviews. 14 (2010) 217-232 Poerschmann, J., Spijkerman, E., Langer, U. Fatty acid patterns in Chlamydomonas sp. as a marker for nutritional regimes and temperature under extremely acidic conditions. Microbial Ecology. 48 (2004) 78–89. Powell, N., Shilton, A., Chisti, Y., Pratt, S. Towards a luxury uptake process via microalgae- Defining the polyphosphate dynamics. Water research. 43 (2009) 4207-4213. Richmond, A. Handbook of microalgal culture: biotechnology and applied phycology. Blackwell Science Ltd; 2004. Ratledge, C. Fatty acid biosynthesis in microorganisms being used for Single Cell Oil production. Biochimie, 86 (2004) 807–815. Rubio, F.C., Camacho, G.F., Sevilla, J.M.F., Chisti, Y., Grima, E. M. A mechanistic model of photosynthesis in microalgae. Biotechnology and Bioengineering. 81 (2003) 459-473 Scott, S.A., Davey, M.P., Dennis, J.S., Horst, I. Christopher J Howe, David J Lea-Smithand Alison G Smith. Biodiesel from algae: challenges and prospects. Current Opinion in Biotechnology. 21 (2010) 277–286 Shuval, H.I. and Gruener, N. Infant methemoglobinemia and other health effects of nitrate in drinking water. Program Water Technology. 8 (1977) 183-193. Sorensen, B.H., Nyholm, N., Baun, A. Algal Toxicity Tests with Volatile andHazardous Compounds in Air-Tight Test Flasks with CO2 Enriched Headspace. Chemosphere. 32 (1996) 1513-1526. Sobczuk, T.M., Camacho, F.G., Rubio, F.C.F., Fernandez, G.A., Grima E.M. Carbon dioxide uptake efficiency by outdoor microalgal cultures in tubular airlift photobioreactors. Biotechnology and Bioengineering. 67 (2000) 465-475. Stein, J.R. Handbook of Phycological methods. Culture methods and growth measurements. Cambridge University Press. 448 (1973) Tsuzuki, M., Ohnuma, T., Sato, N., Takaku, T., Kawaguchi, A. Effects of CO2 concentration during growth on fatty-acid composition in microalgae. Plant Physiology 93 ( 1990.) 851-856. Tsuzuki, M., Ohnuma, E., Sato, N., Takaku, T., Kawaguchi, A. Effects of CO2 concentration during growth on fatty-acid composition in microalgae. Plant Physiology 93 (1990) 851-856. Tonon, T., Harvey, D., Larson, T.R, Graham, L.A. Long chain polyunsaturated fatty acid production and partitioning to triacylglycerols in four microalgae. Phytochemistry 61 (2002) 15-24. Wang, B., Li, Y., Wu, N., Lan, C.Q. CO2 bio-mitigation using microalgae. Apple Microbiology Biotechnology. 79 (2008) 707-718. Wang, Z.T., Ullrich, N., Joo, S., Waffenschmidt, S., Goodenough, U. Algal lipid bodies: stress induction, purification, and biochemical characterization in wild-type and starch-less Chlamydomonas reinhardtii. Eukaryotic Cell 8 (2009) 1856-1868. Wentzel, M.C., Ekama, G.A., Marais, G.V.R. Process and modeling of nitrification denitrification biological excess phosphorus removal system-A review. Water Science and Technology. 25 (1992) 59-82. Wen, Z.Y. and Chen, F. Heterotrophic production of eicosapentaenoic acid by microalgae. Biotechnology Advances 21 (2003) 273-294. Widjaja, A., Chien, C.C., Ju, Y.H. Study of increasing lipid production from fresh water microalgae Chlorella vulgaris. Journal of The Taiwan Institute of Chemical Engineers 40(2009) 13-20 Xin, L., Hue, H.Y., Ke, G., S, Y.X. Effects of different nitrogen and phosphorus concentrations on the growth, nutrient uptake, and lipid accumulation of a freshwater microalga Scenedesmus sp. Bioresource Technology, 101 (2010) 5494-5500. Yang, C., Hua, Q., Shimizu, K. .Energetics and carbon metaboilism during growth of microalgal cells under photoautotrophic, mixotrophic and cyclic light-autotrophic/dark-heterotrophic conditions. Biochemical Engineering Journal 6 (2000) 87-102 經濟部能源局,2010,能源產業技術白皮書,第三篇-我國重點能源科技研發動向及策略。 邱莉婷,2010淨水程序中快濾池去除藻類效能之研究。國立中興大學環境工程學系,碩士論文。 殷伊嫻,2005。固定化藍綠細菌在氣舉式流體化床處理含氮廢水之研究。國立中興大學環境工程學研究所碩士論文。 陳佳雯,2010,利用微藻去除廢水中氮磷及累積油脂之研究。國科會大專生專題研究計畫。 黃愛蘋,2010,利用微藻去除工業廢水中氮、磷並產生生質柴油之可行性研究。國立中興大學環境工程學系,碩士論文。 鄭玟芩,2008,海洋微藻在氮源限制下固定CO2與生質潛能組成之研究。國立成功大環境工程所,碩士論文。 歐陽嶠輝,2005,下水道工程學。長松文化。 賴芃劭,2008,高脂質累積潛力微藻之分離及生質柴油生成限制因子之探討。國立中興大學環境工程學系,碩士論文。 盧偉銘。1993。固定化藍綠藻處理含氮廢水之研究。國立中興大學環境工程學系,碩士論文。
摘要: 工業革命以來,石化燃料的需求日漸增加,目前供給量已日不敷出,故尋找替代能源是目前所注視的焦點之一。其中生質柴油具有能源再生性、生物可分解性與低污染的優點,且與傳統石油的特性相似,不須額外更改引擎設備等優點,是良好的替代能源之一。 微藻被視為產生生質柴油的良好來源,與傳統油質性作物相比,微藻的生長速率較快、有高的光合作用效率、占地面積小、能利用含氮磷源的廢水做生長,並同時達到脂質累積以及廢水氮磷源去除的目的。 本研究希望從台灣本土水樣(國立中興大學中興湖、南投日月潭與苗栗鯉魚潭水庫)中篩選能累積較多脂質的微藻,探討其生長因子,包括二氧化碳濃度及光照週期對生長與脂質累積之影響,並以實際工業廢水來培養藻株,探討其生長、脂質累積量以及脂肪酸脂組成。 結果共分離出11株具有脂質累積的藻株,其中以編號Tai-07-2的脂質累積量最高(油脂含量>20%)。Tai-07-2於不同二氧化碳濃度條件下,在5%二氧化碳下有最高的細胞濃度(1440 mg/l)以及脂質產量(405 mg/l);不同光照週期下所產生的細胞濃度以及脂質產量相近,但以全光照週期下有較快的生長速率;不同起始pH條件下,於起始pH 5 有最高細胞濃度(43 mg/l)及脂質產量(11.9 mg/l)。於廢水條件下,曝5%二氧化碳以及全光照週期下,藻株能有效利用降低水體中氮源(NH4+-N、NO3--N)的濃度,於試程結束時氨氮有100%去除率、硝酸鹽氮有28.8%去除率,磷酸鹽有19.8%去除率,其細胞濃度為720 mg/l,脂質含量可達20.38%。脂肪酸組程分析其碳鏈在C14-C20之間,為適合生產生質柴油的範圍,且與傳統石油碳鏈相近,由實驗顯示微藻Tai-07-2培養於實際廢水中,降低廢水中營養源濃度,並獲得生質柴油是可行的。
Nowadays, oil and natural gas storage on earth has been estimated to be depleted in 50 and 64 years, respectively. The quick development of human activities cause aggravation of greenhouse effect by combustion of fossil fuel, coal, oil and nature gas has become a global issue. Biodiesel is a renewable resource of energy that could be sustainable supplied and no net increased release of carbon dioxide and very low sulfur content. It is biodegradable and nontoxic. Thus, biodiesel is environmentally beneficial. These advantages can solve the problems of energy crisis and carbon dioxide emission. Microalgae has the high potentials in biodiesel production compared to other oil crops due to microalgae can grow in ponds, fermentation units and even wastewater, simultaneous fixation of carbon dioxide not need to add extra organic carbon. Microalgae can utilize NH4+, NO3-, and PO3- as growth nutrients; thus, the coupling of advanced wastewater treatment and biodiesel production based on microalgae is a promising technology. In this research, the important growth factor of microalgae, including the carbon dioxide concentration, illumination period, and initial pH will be concerned. Then the feasibility of nitrogen removal and lipid accumulation will also be investigated. In this investigation, high lipid accumulating microagla Tai-07-2 was selected. The strain Tai-07-2 grew well under the condition of 5% CO2, initial pH5, and continuous illumination in BBM medium. It had biomass concentration of 1440 mg/l, lipid content of 28.18%. In industrial wastewater, experimental results indicated that Tai-07-2 could remove NH4+-N (42.9 mg/l), NO3--N (1.5 mg/l) effectively and had biomass concentration of 720 mg/l, lipid content of 20.38%. Consequently, it is possible to use microalgae Tai-07-2 to decrease nutrient concentration in the wastewater and subsequently to produce biodiesel.
URI: http://hdl.handle.net/11455/5024
其他識別: U0005-2107201115125500
文章連結: http://www.airitilibrary.com/Publication/alDetailedMesh1?DocID=U0005-2107201115125500
Appears in Collections:環境工程學系所

文件中的檔案:

取得全文請前往華藝線上圖書館



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.