請用此 Handle URI 來引用此文件: http://hdl.handle.net/11455/5032
標題: 以光芬頓程序處理含有界面活性劑(Triton X-100) 廢水之研究
Treatment of surfactant Triton X-100 in wastewater by photo-Fenton process
作者: 姜欣伶
Chiang, Hsin-Ling
關鍵字: photo-Fenton process
photo-Fenton法
Surfactant
Endocrine disrupting compound
界面活性劑
內分泌干擾物
出版社: 環境工程學系所
引用: 中文部分 行政院環保署:http://flora2.epa.gov.tw/toxicweb/Comic/index1.html 莫耳消光係數之定義: http://zh.wikipedia.org/wiki/%E8%8E%AB%E8 %80%B3%E5%90%B8%E5%85%89%E5%BA%A6 TX-100 MSDS: 1. https://fscimage.fishersci.com/msds/95513.htm 2.http://www.sigmaaldrich.com 3.http://www.sigmaaldrich.com/etc/medialib/docs/Sigma/Product_Information_Sheet/1/t8532pis.Par.0001.File.tmp/t8532pis.pdf 刈米孝夫 原著,界面活性劑的原理與應用,王鳳英 譯,高立圖書有限公司, 中華民國82年6月20日五版。 王正雄、張小萍、李宜樺、黃壬瑰、陳佩珊、洪文宗,台灣地區擬似環境荷 爾蒙物質管理及環境流布調查,微生物與環境荷爾蒙研討會論文集,1-25,2000。 王正雄、張小萍、黃壬瑰、李宜樺、王世冠、洪文宗、陳珮珊,環境荷爾蒙 -壬基苯酚殘留調查及其對雄鯉魚生理效應之研究,台灣公共衛生雜誌,20 (3),202-215,2001。 申永順,以紫外光/過氧化氫程序處理含氯酚類有機溶液反應行為之研究, 碩士論文,台灣科技大學化學工程研究所,1992。 江晃榮,環境荷爾蒙-人類的危機?轉機?。科學教育,第7-9頁,1998。 李旻恬,太陽能在Fenton-like程序處理染料廢水之效應研究,碩士論文,國 立聯合大學環境與安全衛生工程學系碩士班,2009。 林清安、丁幸一、林德培 編著,界面活性劑化學,第7-12, 23-41頁,民國71 年再版。 施存榮,由產業趨勢與特性看我國的界面活性劑工業,1997。 凌永健,生活環境中環境荷爾蒙之調查研究。第五屆環環境荷爾蒙及持久性 有機汙染物研討會論文集,第39頁,2008。 張博荀,H2O2/Fe2+化學氧化法處理反應性染料-Black B 之研究,碩士論文, 國立成功大學化學工程研究所,2004。 曹恒光、連大成,淺談微乳液,物理雙月刊,第23卷,第4期,第488-493頁, 2001。 許真瑜,利用Triton X-100 界面活性劑清洗土壤中多環芳香烴之研究,國立 中山大學環境工程研究所碩士論文,1997。 陳永仁,環境荷爾蒙管制。台北市,財團法人孫運璿學術基金會,2001。 陳秀卿,污水分析實習教材,國立中興大學環境工程學系,2009。 陳雄文、王正雄、黃壬瑰、王世冠、李宜樺、洪文宗,壬基酚聚乙氧基醇類 非離子界面活性劑環境荷爾蒙效應之探討,第三屆台灣環境資源永續發展研討會,2001。 傅家溱,使用Fenton程序處理酸性染料(Eosin Yellow)之研究,碩士論文,國 立中興大學環境工程研究所,2011。 黃瑞淵,反應性元素鐵濾床結合過氧化氫近行水及土壤中五氯酚之還原養化 脫氯,碩士論文,嘉南藥理科技大學環境工程與科學系,2005。 蔡維馨,紫外光/過氧化氫程序降解辛基苯酚聚氧乙烯醇水溶液之研究,碩 士論文,國立中央大學環境工程研究所,2011。 鄭佩珊,應用電化學合成過氧化氫處理染料廢水(RB5)之研究,碩士論文, 國立中興大學環境工程研究所,2011。 鄧禮浩,界面活性劑增效電動力技術復育受五氯酚污染土壤之探討,碩士論 文,國立中興大學環境工程研究所,2011。 賴秀美,Electro-Fenton 處理水相氯酚類化合物之研究,碩士論文,國立中 興大學環境工程研究所,2010。 西文部分 Ahel, M., McEvoy, J. and Giger, W. (1993). Bioaccumulation of the lipophilic metabolites of nonionic surfactants in freshwater organisms, Environmental Pollution, 79, 243-248. Ahel, M.., Giger, W. and Koch, M. (1994). Behaviour of alkylphenol polyethoxylate surfactants in the aquatic environment—I. Occurrence and transformation in sewage treatment, Water Research, 28, 1131-1142. Aleboyeh, A., Moussa, Y. and Aleboyeh, H. (2005). The effect of operational parameters on UV/H2O2 decolourisation of Acid Blue 74, Dyes and Pigments, 66, 129-134. Arnold, S. M., Hickey, W. J. and Harris, R. F. (1995). Degradation of atrazine by Fenton’s reagent Condition optimization and product quantification, Environmental science & technology, 29, 2083-2089. Beltran, F. J., Gonzalez, M. and Gonzalez, J. F. (1997). Industrial wastewater advanced oxidation. Part 1. UV radiation in the presence and absence of hydrogen peroxide or UV radiation, Water Research, 31(10), 2405-14. Benitez, F. J., Beltran-Heredia, J., Acero, J. L. and Rubio, F. J. (2000). Rate constants for the reactions of ozone with chlorophenols in aqueous solutions, Journal of hazardous materials, B79, 271-285. Bossmann, S. H., Oliveros, E., Gob, S., Siegwart, S., Dahlen, E. P., Payawan, L., Straub, M., Worner, M. and Braun, A. M. (1998). New evidence against hydroxyl radicals as reactive intermediates in the thermal and photochemically enhanced Fenton reactions. The journal of physical chemistry. A, 102(28), 5542-5550. Chu, W. (2001). Modeling the quantum yields of herbicide 2,4-D decay in UV/H2O2 process. Chemosphere, 44, 935-41. Elizardo, K. (1991). Fighting pollution with hydrogen peroxide, Pollution engineering, 106-109. Faust, B. C. and Hoigne, J. (1990). Photolysis of Fe(III)-hydroxyl complexes as sources of HO‧ radicals in clouds, fog and rain, Atmospheric Environment, 24A, 79-89. Fuente, L. de la., Acosta, T., Babay, P., Curutchet, G., Candal, R. and Litter M. I. (2010). Degradation of nonylphenol ethoxylate-9 (NPE-9) by photochemical advanced oxidation technologies, Industrial & Engineering Chemistry Research, 49, 6909-6915. Galindo, C. and Kalt, A. (1998). UV-H2O2 oxidation of monoazo dyes in aqueous media: a kinetic study, Dyes and Pigments, 40, 27-35. Galindo, C., Jaques, P. and Kalt, A. (2001). Photochemical and photocatalytic degradation of an indigoid dye: a case study of acid blue 74 (AB74). Journal of Photochemistry and Photobiology A: Chemistry, 141, 47-56. Giger ,W., Brunner P. H. and Schaffner, C. (1984). 4-Nonylphenol in sewage sludge:accumulation of toxic metabolites from non-ionic surfactants, Science, 225, 623- 5. Glaze, W. H., Kang, J. W. and Chapin, D. H. (1987). The chemistry of water treatment processes involving ozone, hydrogen peroxide and ultraviolet radiation, Ozone: science & engineering, 9, 335-352. Glaze, W. H., Beltran, F., Tuhkanen, T. and Kang, J. W. (1992). Chemical models of advanced oxidation processes, Water Pollution Research Journal of Canada, 27(1), 23-42. Guenther, K., Heinke, V., Thiele, B., Kleist, E., Prast, H. and Raecker, T. (2002). Endocrine disrupting nonylphenols are ubiquitous in food. Environmental Science & Technology, 36(8), 1676-1680. Hager, D. G. (1990). Innovatuve Hazardous Waste Treatment, Technology Series, Vol. 2, 143-153 Hickey, W. J., Arnold, S. M. and Harris, R. F. (1995). Degradation of atrazine by Fenton’s reagent: condition optimization and product quantification, Environmental science & technology, 29 (8), 2083-2089. Hsueh, C. L., Huang, Y. H., Wang, C. C. and Chen, C. Y. (2006). Photoassisted fenton degradation of nonbiodegradable azo-dye (Reactive Black 5) over a novel supported iron oxide catalyst at neutral pH, Journal of molecular catalysis. A, Chemical, 245, 78-86. Karsa, D. R. (1987). Industrial Applications of Surfactants. Page 8. (ed. Karsa, D. R.) The Royal Society of Chemistry. London. Krutzler, T. and Bauer, R. (1999). Optimization of a photo-fenton prototype reactor, Chemophere, 38(11), 2517-2532. Kusic, H., Bozic, A. L. and Koprivanac, N. (2007). Fenton type processes for minimization of organic content in coloured wastewaters : part I : processes optimization, Dyes and Pigments, 74, 380-387. Legrini, O., Oliveros, E. and Braun, A. M. (1993). Photochemical processes for water treatment, Chemical Reviews, 93, 671-98. Lindsey, M. E. and Tarr, M. A. (2000). Quantitation of hydroxyl radical during Fenton oxidation following a single addition of iron and peroxide, Chemosphere, 41(3), 409-417. Lucas, M. S. and Peres, J. A. (2006). Decolorization of the azo dye Reactive Black 5 by Fenton and photo-Fenton oxidation, Dyes and Pigments, 71, 236-244. Mihaela, I. S., Aitlen, R. H. and James, R. B. (1996). Kinetics and mechanism of the degradation and mineralization of acetone in dilute aqueous solution sensitized by the UV photolysis of hydrogen peroxide. Environmental science & technology, 30, 2382-2390. Modirshahla, N., Behnajady, M. A. and Ghanbary, F. (2007). Decolorization and mineralization of C.I. Acid Yellow 23 by Fenton and photo-Fenton processes, Dyes and Pigments, 73, 305-310. Neynes, E. and Baeyens, J. (2003). A review of classic Fenton’s peroxidation as an advanced oxidation technique, Journal of hazardous materials, B 98, 33-50. Nimrod, A. C. and Benson, W. H. (1996). Environmental estrogenic effects of alkylphenol ethoxylates. Critical Reviews in Toxicology, 26(3), 335-364. Pignatello, J. J., Liu, D. and Huston, P. (1999). Evidence for an additional oxidant in the photoassisted Fenton reaction, Environmental science & technology, 33, 1832-1839. Qiao, L. (1996). A Study of Triton X Series Nonionic Surfactant Solutions. Department of Chemistry, A Thesis Presented to the University of Auckland. Qiao, R. P., Li, N., Qi, X. H., Wang, Q. S. and Zhuang, Y. Y. (2005). Degradation of microcystin-RR by UV radiation in the presence of hydrogen peroxide, Toxicon, 45, 745-752. Renner, R. (1997). European bans on surfactant trigger transatlantic debate, Environmental science & technology, 31(7), 316-320. Sagawe, G., Lehnard, A., Lubber, M. and Bahnemann, D. (2001). The insulated solar Fenton hybrid process : fundamental investigations, Helvetica Chimica Acta, 84, 3742-3758. Saien, J., Ojaghloo, Z., Soleymani, A. R. and Rasoulifard, M. H. (2011). Homogeneous and heterogeneous AOPs for rapid degradation of Triton X-100 in aqueous media via UV light, nano titania hydrogen peroxide and potassium persulfate, Chemical Engineering Journal, 167, 172-182. Schik, M. J. (1967). Nonionic surfactants. Vol.1, Chapter 1. (ed. Schik, M. J.) Marce Dekker Inc. New York. Sellers, R. M. (1980). Spectrophotometric determination of hydrogen-peroxide using potassium titanium (IV) oxalate, Analyst, 105, 950-954. Shu, H. Y., Huang, C. R. and Chang, M. C. (1994). Decolourisation of mono-azodyes in wastewater by advanced oxidation process: a case study of acid red 1 and acid yellow 23. Chemosphere, 29(12), 2597-607. Snyder, S. A., Keith, T. L., Pierens, S. L., Synder, E. M. and Giesy, J. P. (2001). Bioconcentration of nonylphenol in fathead minnows (Pimephales promelas). Chemosphere, 44, 1697-1702. Titus, M. P., Molina, V. G., Banos, M. A., Gimenez, J. and Esplugas, S. (2004). Degradation of chlorophenols by means of advanced oxidation processes: a general review, Applied Catalysis B: Environmental, 47, 219-256. Walling, C. (1975). Fenton’s reagent revisited, Accounts of chemical research, 8(1), 121-131. Ying, G. G., Williams, B. and Kookana, R. (2002). Environmental fate of alkylphenols and alkylphenol ethoxylates: A review. Environment International, 28, 215-226. Ying, G. G. (2006). Fate, behavior and effects of surfactants and their degradation products in the environment. Environment International, 32, 417-431. Yue, P. L. (1993). Modelling of kinetics and reactors for water purification by photo-oxidation. Chemical engineering science, 48, 1-11. Zanette, M., Antonio, M., Marchiori, E. and Roberto, S. (1996). High Performance Liquid Chromatographic-Fluorscence Determination of Aliphatic Alcohol Polyethoxylates and Polythlene glycols in Aqueous Sample, Journal of Chromatography A, 756, 159-174. Zhao, X. K., Yang, G. P., Wang, Y. J. and Gao, X. C. (2004). Photochemical degradation of dimethyl phthalate by Fenton reagent, Journal of Photochemistry and Photobiology A: Chemistry, 161, 215-220. Zheng, H., Pan, Y. and Xiang, X. (2007). Oxidation of acidic dye Eosin Y by the solar photo-Fenton processes, Journal of Hazardous Materials, 141, 457-464. Zuo, Y. and Hoigne, J. (1992). Formation of hydrogen peroxide and depletion of oxalic acid in atmospheric water by photolysis of iron-(III)─oxalate complexes, Environmental science & technology, 1992, 26, 1014-1022. Zuo, Y. and Hoigne, J. (1994). Photochemical decomposition of oxalic, glycoxalic and pyruvic acids catalysed by iron in atmospheric waters, Atmospheric Environment, 2, 1231-1239.
摘要: 高級氧化程序 (Advanced oxidation processes, AOPs) 之共同特性為產生具有強氧化力、非選擇性之氫氧自由基 (Hydroxyl radical, ‧OH),進而有效降解破壞水中各種有機污染物質。本研究以辛基苯酚聚氧乙烯醇 (Triton X-100, TX-100) 界面活性劑為目標污染物,初始濃度固定為50 mg/L,控制不同參數 (H2O2/Fe2+比例、UV光強度等),利用Fenton法並結合外加光源,建構紫外光/過氧化氫系統 (UV/H2O2)、亞鐵離子/過氧化氫系統 (Fenton) 及紫外光/亞鐵離子/過氧化氫系統 (photo-Fenton),針對廢水中TX-100及化學需氧量之去除進行探討。 研究結果顯示,以UV/H2O2、Fenton、photo-Fenton三程序處理後,廢水中之TX-100之去除率分別為43%、95%、97%;在COD降解部分,其去除率為4%、44%、50%。Photo-Fenton程序之最適操作條件為:光強度 = 90 W、pH = 3、[H2O2]/[Fe2+]莫耳比 = 4.5 ([H2O2]/[Fe2+] = 1.155/0.257 mM)、[H2O2]/[TX-100] 莫耳比 = 15)。 在相同Fenton試劑比值及劑量下,三程序對TX-100之去除能力依序為photo-Fenton > Fenton > UV/H2O2,photo-Fenton在反應90分鐘即可達97%之去除率,Fenton及UV/ H2O2反應120分鐘後TX-100去除率分別為69%、10%;因此使用photo-Fenton可使用較少之藥劑量而得到較良好之去除效果。
All of Advanced oxidation processes (AOPs) have the same characteristic, which can produce strong oxidation ability, non-specific hydroxyl radical (‧OH) to effectively decompose a variety of organic pollutants in the wastewater. This study investigates the removal and chemical oxygen demand (COD) of octylphenol polyethoxylates (Triton X-100, TX-100) surfactant by Fenton process, or combined UV light at various operating parameters in UV/H2O2, Fe2+/H2O2 and UV/Fe2+/H2O2 systems. Furthermore, the efficiencies of three oxidation processes were compared. The maximum removal rate for Triton X-100 wastewater with UV/H2O2, Fenton and photo-Fenton processes were 43%, 95% and 97% respectively. And COD removal rate were 4%, 44% and 50% respectively. The optimum operating conditions for photo-Fenton process in this study was as follows : UV light intensity = 90 W, pH = 3, [H2O2]/[Fe2+] molar ratio = 4.5 ([H2O2]/[Fe2+] = 1.155/0.257 mM, [H2O2]/[TX-100] molar ratio = 15) Under the same Fenton reagent ratio and dosage, the sequence of three processes was photo-Fenton > Fenton > UV/H2O2. The removal rate with photo-Fenton processes was 97% after 90 min of reaction, Fenton and UV/H2O2 were 69% and 10% respectively after 120 min of reaction. The results showed that the oxidation by UV/Fe2+/H2O2 was the strongest, and even greater than the arithmetic sum of the other two processes.
URI: http://hdl.handle.net/11455/5032
其他識別: U0005-2206201213130300
文章連結: http://www.airitilibrary.com/Publication/alDetailedMesh1?DocID=U0005-2206201213130300
顯示於類別:環境工程學系所

文件中的檔案:
沒有與此文件相關的檔案。


在 DSpace 系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。