Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/5044
標題: 以改質奈米碳管儲存氫氣之研究
Titanium Dioxide Enhanced Carbon Nanotubes for Hydrogen Storage
作者: 陳凱文
Johnston, Kelvin
關鍵字: carbon nanotube
奈米碳管
hydrogen storage
titanium dioxide
soldium hypochlorite
儲氫
二氧化鈦
次氯酸鈉
出版社: 環境工程學系所
引用: 1. US DOE. U.S. Department of Energy, A National Vision of Americaʼs Transition to a Hydrogen Economy - to 2030 and Beyond [Internet]. 2002 ;Available from: http://www.eere.energy.gov/hydrogenandfuelcells/pdfs/vision_doc.pdf 2. US DOE. U.S. Department of Energy, National Hydrogen Energy Roadmap [Internet]. 2002 ;Available from: http://www.eere.energy.gov/hydrogenandfuelcells/pdfs/national_h2_roadmap.pdf 3. Administration. International Energy Outlook 2010 [Internet]. 2010. 2010 ;Available from: http://www.eia.doe.gov/oiaf/ieo/world.html 4. Bureau of Energy MOEA. The Energy Situation in Taiwan, Republic of China [Internet]. 2007 ;Available from: http://web2.moeaboe.gov.tw/ecw/About/energy situation/main/en_04.html 5. Unger N, Bond TC, Wang JS, Koch DM, Menon S, Shindell DT, et al. Attribution of climate forcing to economic sectors. [Internet]. Proceedings of the National Academy of Sciences of the United States of America. 2010 Feb ;107(8):3382-7.Available from: http://www.ncbi.nlm.nih.gov/pubmed/20133724 6. Yang C. Hydrogen and electricity: Parallels, interactions, and convergence [Internet]. International Journal of Hydrogen Energy. 2008 Apr ;33(8):1977-1994.Available from: http://linkinghub.elsevier.com/retrieve/pii/S0360319908001882 7. Brown JE, Hendry CN, Harborne P. An emerging market in fuel cells? Residential combined heat and power in four countries [Internet]. Energy Policy. 2007 Apr ;35(4):2173-2186.[cited 2011 Mar 1] Available from: http://linkinghub.elsevier.com/retrieve/pii/S0301421506002813 8. List of ICE Hydrogen cars [Internet]. 2010 ;Available from: http://en.wikipedia.org/wiki/List_of_hydrogen_internal_combustion_engine_vehicles 9. List of Fuel cell vehicles [Internet]. 2011 ;Available from: http://en.wikipedia.org/wiki/List_of_fuel_cell_vehicles 10. Honda Motor Company. “Honda Announces First FCX Clarity Customers and World's First Fuel Cell Vehicle Dealership Network as Clarity Production Begins” [Internet]. 2008 ;Available from: http://world.honda.com/news/2008/4080616First-FCX-Clarity/ 11. USCAR UD. U.S. Department of Energy, Targets for On-Board Hydrogen Storage Systems for Light-Duty Vehicles [Internet]. 2009 ;Available from: http://www.eere.energy.gov/hydrogenandfuelcells/storage/pdfs/targets_onboard_hydro_storage.pdf 12. Iijima S. Helical microtubules of graphitic carbon [Internet]. Nature. 1991 ;354(6348):56-58.Available from: http://www.nature.com/doifinder/10.1038/354056a0 13. Lan A, Mukasyan A. Hydrogen storage capacity characterization of carbon nanotubes by a microgravimetrical approach. [Internet]. The Journal of Physical Chemistry B. 2005 ;109(33):16011-16016.Available from: http://www.ncbi.nlm.nih.gov/pubmed/16853032 14. Zuttel A. Hydrogen storage methods. [Internet]. Die Naturwissenschaften. 2004 ;91(4):157-72.Available from: http://www.ncbi.nlm.nih.gov/pubmed/15085273 15. Dillon A, Jones K, Bekkedahl T, Kiang C, Bethune D, Heben M. Storage of hydrogen in single-walled carbon nanotubes [Internet]. 1997 ;Available from: http://www.nature.com/nature/journal/v386/n6623/abs/386377a0.html 16. Ye Y, Ahn CC, Witham C, Fultz B, Liu J, Rinzler a G, et al. Hydrogen adsorption and cohesive energy of single-walled carbon nanotubes [Internet]. Applied Physics Letters. 1999 ;74(16):2307.Available from: http://link.aip.org/link/APPLAB/v74/i16/p2307/s1&Agg=doi 17. Huang W. The effect of pretreatments on hydrogen adsorption of multi-walled carbon nanotubes [Internet]. Materials Chemistry and Physics. 2003 Feb ;78(1):144-148.Available from: http://linkinghub.elsevier.com/retrieve/pii/S025405840200305X 18. Lueking a. Hydrogen spillover to enhance hydrogen storage—study of the effect of carbon physicochemical properties [Internet]. Applied Catalysis A: General. 2004 Jul ;265(2):259-268.Available from: http://linkinghub.elsevier.com/retrieve/pii/S0926860X04000651 19. Wang L, Yang FH, Yang RT, Miller M a. Effect of Surface Oxygen Groups in Carbons on Hydrogen Storage by Spillover [Internet]. Industrial & Engineering Chemistry Research. 2009 Mar ;48(6):2920-2926.Available from: http://pubs.acs.org/doi/abs/10.1021/ie8014507 20. Wang L, Yang RT. New sorbents for hydrogen storage by hydrogen spillover - a review. Society. 2008 ;(May):268-279. 21. Wang Z, Yang FH, Yang RT. Enhanced Hydrogen Spillover on Carbon Surfaces Modified by Oxygen Plasma. Society. 2010 ;1601-1609. 22. Darkrim L, Malbrunot P, Tartaglia P. Review of hydrogen storage by adsorption in carbon nanotubes. International Journal of Hydrogen Energy. 2002 ;27193-202. 23. Simonyan V. Hydrogen storage in carbon nanotubes and graphitic nanofibers [Internet]. Journal of Alloys and Compounds. 2002 Jan ;330-332(1-2):659-665.Available from: http://linkinghub.elsevier.com/retrieve/pii/S0925838801016644 24. Yang RT. Hydrogen storage by alkali-doped carbon nanotubes - revisited. Science. 2000 ;38623-626. 25. Hirscher M. Hydrogen storage in carbon nanostructures. Journal of Alloys and Compounds. 2002 Jan ;330-332(1-2):654-658. 26. Lueking A. Hydrogen Spillover from a Metal Oxide Catalyst onto Carbon Nanotubes—Implications for Hydrogen Storage [Internet]. Journal of Catalysis. 2002 Feb ;206(1):165-168.Available from: http://linkinghub.elsevier.com/retrieve/pii/S0021951701934724 27. Zuttel A. Hydrogen sorption by carbon nanotubes and other carbon nanostructures [Internet]. Journal of Alloys and Compounds. 2002 Jan ;330-332(1-2):676-682.Available from: http://linkinghub.elsevier.com/retrieve/pii/S0925838801016590 28. Huang W. The effect of pretreatments on hydrogen adsorption of multi-walled carbon nanotubes [Internet]. Materials Chemistry and Physics. 2003 Feb ;78(1):144-148.Available from: http://linkinghub.elsevier.com/retrieve/pii/S025405840200305X 29. Li X. Measuring hydrogen storage capacity of carbon nanotubes by tangent-mass method [Internet]. International Journal of Hydrogen Energy. 2003 Nov ;28(11):1251-1253.Available from: http://linkinghub.elsevier.com/retrieve/pii/S0360319902002379 30. Anson A, Benham M, Jagiello J, Callejas MA, Benito AM, Maser WK, et al. Hydrogen adsorption on a single-walled carbon nanotube material: a comparative study of three different adsorption techniques [Internet]. Nanotechnology. 2004 ;15(11):1503-1508.Available from: http://stacks.iop.org/0957-4484/15/i=11/a=023?key=crossref.bd526a056e4d49ffb184dc04f03503a7 31. Kim H-S, Lee H, Han K-S, Kim J-H, Song M-S, Park M-S, et al. Hydrogen storage in ni nanoparticle-dispersed multiwalled carbon nanotubes. [Internet]. The journal of physical chemistry. B. 2005 May ;109(18):8983-6.Available from: http://www.ncbi.nlm.nih.gov/pubmed/16852070 32. Lan A, Mukasyan A. Hydrogen storage capacity characterization of carbon nanotubes by a microgravimetrical approach. [Internet]. The journal of physical chemistry. B. 2005 Aug ;109(33):16011-6.Available from: http://www.ncbi.nlm.nih.gov/pubmed/16853032 33. Yildirim T, Ciraci S. Titanium-Decorated Carbon Nanotubes as a Potential High-Capacity Hydrogen Storage Medium [Internet]. Physical Review Letters. 2005 May ;94(17):1-4.Available from: http://link.aps.org/doi/10.1103/PhysRevLett.94.175501 34. Zacharia R, Kim K, Fazlekibria a, Nahm K. Enhancement of hydrogen storage capacity of carbon nanotubes via spill-over from vanadium and palladium nanoparticles [Internet]. Chemical Physics Letters. 2005 Sep ;412(4-6):369-375.Available from: http://linkinghub.elsevier.com/retrieve/pii/S0009261405010377 35. Naab F, Dhoubhadel M, Gilbert J, Gilbert M, Savage L, Holland O, et al. Direct measurement of hydrogen adsorption in carbon nanotubes/nanofibers by elastic recoil detection [Internet]. Physics Letters A. 2006 Jul ;356(2):152-155.Available from: http://linkinghub.elsevier.com/retrieve/pii/S0375960106004130 36. Wu C, Wang P, Yao X, Liu C, Chen D, Lu G, et al. Effect of carbon/noncarbon addition on hydrogen storage behaviors of magnesium hydride [Internet]. Journal of Alloys and Compounds. 2006 ;414(1-2):259-264.Available from: http://linkinghub.elsevier.com/retrieve/pii/S0925838805012272 37. Chen C-hung, Huang C-chia. Hydrogen storage by KOH-modified multi-walled carbon nanotubes [Internet]. International Journal of Hydrogen Energy. 2007 Feb ;32(2):237-246.Available from: http://linkinghub.elsevier.com/retrieve/pii/S0360319906001832 38. Durgun E, Jang R, Ciraci S, Swnts B-substituted, Report TB. Hydrogen storage capacity of Ti-doped boron-nitride and B∕Be -substituted carbon nanotubes [Internet]. Physical Review B. 2007 Aug ;76(7):33-36.Available from: http://link.aps.org/doi/10.1103/PhysRevB.76.073413 39. Rather S-ullah, Zacharia R, Hwang SW, Naik M-ud-din, Nahm KS. Hydrogen uptake of palladium-embedded MWCNTs produced by impregnation and condensed phase reduction method [Internet]. Chemical Physics Letters. 2007 Jun ;441(4-6):261-267.Available from: http://linkinghub.elsevier.com/retrieve/pii/S0009261407005799 40. Reddy a, Ramaprabhu S. Hydrogen storage properties of nanocrystalline Pt dispersed multi-walled carbon nanotubes [Internet]. International Journal of Hydrogen Energy. 2007 ;32(16):3998-4004.Available from: http://linkinghub.elsevier.com/retrieve/pii/S0360319907002686 41. Xu C, Takahashi K, Kumagai M, Ishiyama S, Kaneko K, Iijima S. Investigation of hydrogen storage capacity of various carbon materials [Internet]. International Journal of Hydrogen Energy. 2007 Sep ;32(13):2504-2512.Available from: http://linkinghub.elsevier.com/retrieve/pii/S0360319906005593 42. Zacharia R, Rather S-ullah, Hwang SW, Nahm KS. Spillover of physisorbed hydrogen from sputter-deposited arrays of platinum nanoparticles to multi-walled carbon nanotubes [Internet]. Chemical Physics Letters. 2007 Feb ;434(4-6):286-291.Available from: http://linkinghub.elsevier.com/retrieve/pii/S000926140601815X 43. Banerjee S, Puri IK. Enhancement in hydrogen storage in carbon nanotubes under modified conditions [Internet]. Nanotechnology. 2008 Apr ;19(15):155702.Available from: http://stacks.iop.org/0957-4484/19/i=15/a=155702?key=crossref.c01ebd00dfa35850a4be0732d5e1d380 44. Chen B, Li B, Chen L. Prompted hydrogenation of carbon nanotubes by doping light metals [Internet]. Applied Physics Letters. 2008 ;93(4):043104.Available from: http://link.aip.org/link/APPLAB/v93/i4/p043104/s1&Agg=doi 45. Durgun E, Ciraci S, Yildirim T. Functionalization of carbon-based nanostructures with light transition-metal atoms for hydrogen storage [Internet]. Physical Review B. 2008 Feb ;77(8):1-9.[cited 2010 Oct 14] Available from: http://link.aps.org/doi/10.1103/PhysRevB.77.085405 46. Hsieh C-te, Wei J-long, Lin J-yi, Chen W-yu. Hydrogenation and dehydrogenation of Mg2Co nanoparticles and carbon nanotube composites [Internet]. Journal of Power Sources. 2008 Aug ;183(1):92-97.Available from: http://linkinghub.elsevier.com/retrieve/pii/S0378775308008161 47. Lee H, Nguyen MC, Ihm J. Solid State Communications. 2008 ;146431-434. 48. Nikitin A, Li X, Zhang Z, Ogasawara H, Dai H, Nilsson A. Hydrogen storage in carbon nanotubes through the formation of stable C-H bonds. [Internet]. Nano letters. 2008 Jan ;8(1):162-7.Available from: http://www.ncbi.nlm.nih.gov/pubmed/18088150 49. Ioannatos GE, Verykios XE. H 2 storage on single- and multi-walled carbon nanotubes. International Journal of Hydrogen Energy. 2009 ;1-7. 50. Lee H, Ihm J, Cohen ML, Louie SG. Calcium-decorated carbon nanotubes for high-capacity hydrogen storage: First-principles calculations. 2009 ;1-5. 51. Wang Q, Johnson JK. Molecular simulation of hydrogen adsorption in single-walled carbon nanotubes and idealized carbon slit pores [Internet]. The Journal of Chemical Physics. 1999 ;110(1):577.Available from: http://link.aip.org/link/JCPSA6/v110/i1/p577/s1&Agg=doi 52. Rather S, Mehrajuddin N, Zacharia R, Hwang S, Kim a, Nahm K. Hydrogen storage of nanostructured TiO2-impregnated carbon nanotubes [Internet]. International Journal of Hydrogen Energy. 2009 Jan ;34(2):961-966.[cited 2010 Aug 2] Available from: http://linkinghub.elsevier.com/retrieve/pii/S0360319908012998 53. Lin K-Y, Tsai W-T, Yang T-J. Effect of Ni nanoparticle distribution on hydrogen uptake in carbon nanotubes [Internet]. Journal of Power Sources. 2010 Apr ;Available from: http://linkinghub.elsevier.com/retrieve/pii/S0378775310006531 54. Liu C, Chen Y, Wu C-Z, Xu S-T, Cheng H-M. Hydrogen storage in carbon nanotubes revisited [Internet]. Carbon. 2010 ;48(2):452-455.Available from: http://linkinghub.elsevier.com/retrieve/pii/S0008622309006435 55. Geng H-Z, Kim TH, Lim SC, Jeong H-K, Jin MH, Jo YW, et al. Hydrogen storage in microwave-treated multi-walled carbon nanotubes [Internet]. International Journal of Hydrogen Energy. 2010 ;35(5):2073-2082.Available from: http://linkinghub.elsevier.com/retrieve/pii/S0360319909020473 56. Yang C-C, Li YJ, Chen W-H. Electrochemical hydrogen storage behavior of single-walled carbon nanotubes (SWCNTs) coated with Ni nanoparticles [Internet]. International Journal of Hydrogen Energy. 2010 Mar ;35(6):2336-2343.Available from: http://linkinghub.elsevier.com/retrieve/pii/S0360319910000145 57. Chambers A, Park C, Baker RTK, Rodriguez NM. Hydrogen storage in graphite nanofibers [Internet]. Journal of Physical Chemistry B. 1998 ;102(22):4253-4256.Available from: http://link.aip.org/link/?&l_creator=getabs-search&l_dir=FWD&l_rel=CITES&from_key=JAPIAU000097000004041301000001&from_keyType=CVIPS&from_loc=AIP&to_j=JPCBFK&to_v=102&to_p=4253&to_loc=DOI&to_url=http://dx.doi.org/10.1021/jp980114l 58. Ye Y, Ahn CC, Witham C, Fultz B, Liu J, Rinzler a G, et al. Hydrogen adsorption and cohesive energy of single-walled carbon nanotubes [Internet]. Applied Physics Letters. 1999 ;74(16):2307.Available from: http://link.aip.org/link/APPLAB/v74/i16/p2307/s1&Agg=doi 59. Liu C. Hydrogen Storage in Single-Walled Carbon Nanotubes at Room Temperature [Internet]. Science. 1999 Nov ;286(5442):1127-1129.Available from: http://www.sciencemag.org/cgi/doi/10.1126/science.286.5442.1127 60. Chen P. High H2 Uptake by Alkali-Doped Carbon Nanotubes Under Ambient Pressure and Moderate Temperatures [Internet]. Science. 1999 Jul ;285(5424):91-93.Available from: http://www.sciencemag.org/cgi/doi/10.1126/science.285.5424.91 61. Darkrim F, Nord P, Levesque D, Sud P. High Adsorptive Property of Opened Carbon Nanotubes at 77 K. Society. 2000 ;6773-6776. 62. Zuttel A. Hydrogen storage methods. [Internet]. Die Naturwissenschaften. 2004 ;91(4):157-72.Available from: http://www.ncbi.nlm.nih.gov/pubmed/15085273 63. Liu W, Zhao YH, Li Y, Jiang Q, Lavernia EJ. Enhanced Hydrogen Storage on Li-Dispersed Carbon Nanotubes [Internet]. The Journal of Physical Chemistry C. 2009 Feb ;113(5):2028-2033.Available from: http://pubs.acs.org/doi/abs/10.1021/jp8091418 64. McAfee JL, Poirier B. Quantum dynamics of hydrogen interacting with single-walled carbon nanotubes. [Internet]. The Journal of chemical physics. 2009 Mar ;130(6):064701.Available from: http://www.ncbi.nlm.nih.gov/pubmed/19222284 65. Zielinski M, Wojcieszak R, Monteverdi S, Mercy M, Bettahar M. Hydrogen storage on nickel catalysts supported on amorphous activated carbon [Internet]. Catalysis Communications. 2005 Dec ;6(12):777-783.[cited 2011 Mar 24] Available from: http://linkinghub.elsevier.com/retrieve/pii/S1566736705001585 66. Mcdaniel F, Naab F, Holland O, Dhoubhadel M, Mitchell L, Duggan J. Low-energy ion irradiation effects on hydrogen absorption and desorption in carbon nanotubes [Internet]. Surface and Coatings Technology. 2007 Aug ;201(19-20):8564-8567.Available from: http://linkinghub.elsevier.com/retrieve/pii/S0257897207003015 67. Park S-J, Lee S-Y. Hydrogen storage behaviors of platinum-supported multi-walled carbon nanotubes [Internet]. International Journal of Hydrogen Energy. 2010 Jun ;1-7.[cited 2010 Aug 2] Available from: http://linkinghub.elsevier.com/retrieve/pii/S0360319910007792 68. Hwang S. Hydrogen uptake of multiwalled carbon nanotubes decorated with Pt-Pd alloy using thermal vapour deposition method [Internet]. Journal of Alloys and Compounds. 2009 Jul ;480(2):L20-L24.Available from: http://linkinghub.elsevier.com/retrieve/pii/S0925838809002035 69. Chen L, Pez G, Cooper AC, Cheng H. A mechanistic study of hydrogen spillover in MoO 3 and carbon-based graphitic materials [Internet]. Journal of Physics: Condensed Matter. 2008 Feb ;20(6):064223.Available from: http://stacks.iop.org/0953-8984/20/i=6/a=064223?key=crossref.2b8f3a6236cb5b4d81c372f7d816007f 70. Contescu CI, Brown CM, Liu Y, Bhat VV, Gallego NC. Detection of Hydrogen Spillover in Palladium-Modified Activated Carbon Fibers during Hydrogen Adsorption [Internet]. The Journal of Physical Chemistry C. 2009 Apr ;113(14):5886-5890.[cited 2010 Oct 14] Available from: http://pubs.acs.org/doi/abs/10.1021/jp900121k 71. Dag S, Ozturk Y, Ciraci S, Yildirim T. Adsorption and dissociation of hydrogen molecules on bare and functionalized carbon nanotubes [Internet]. 2005 Apr ;8.[cited 2010 Jul 14] Available from: http://arxiv.org/abs/cond-mat/0504696 72. Suttisawat Y, Rangsunvigit P, Kitiyanan B, Williams M, Ndungu P, Lototskyy MV, et al. Investigation of hydrogen storage capacity of multi-walled carbon nanotubes deposited with Pd or V [Internet]. International Journal of Hydrogen Energy. 2009 ;34(16):6669-6675.Available from: http://linkinghub.elsevier.com/retrieve/pii/S0360319909009653 73. Lee H, Nguyen M, Ihm J. Titanium-functional group complexes for high-capacity hydrogen storage materials [Internet]. Solid State Communications. 2008 Jun ;146(9-10):431-434.Available from: http://linkinghub.elsevier.com/retrieve/pii/S0038109808001300 74. Raja S, Mahajan K, Misra M. Determination of photo conversion efficiency of nanotubular titanium oxide photo-electrochemical cell for solar hydrogen generation [Internet]. Journal of Power Sources. 2006 Sep ;159(2):1258-1265.Available from: http://linkinghub.elsevier.com/retrieve/pii/S0378775305017039 75. Ma L-P, Wang P, Cheng H-M. Hydrogen sorption kinetics of MgH2 catalyzed with titanium compounds [Internet]. International Journal of Hydrogen Energy. 2010 Apr ;35(7):3046-3050.[cited 2010 Sep 13] Available from: http://linkinghub.elsevier.com/retrieve/pii/S0360319909010386 76. Yang M, Zhao X, Ding Y, Ma L, Qu X, Gao Y. Electrochemical properties of titanium-based hydrogen storage alloy prepared by solid phase sintering [Internet]. International Journal of Hydrogen Energy. 2010 Apr ;35(7):2717-2721.[cited 2010 Sep 23] Available from: http://linkinghub.elsevier.com/retrieve/pii/S0360319909005886 77. Zuliani F, Baerends E. Addition of titanium as a potential catalyst for a high-capacity hydrogen storage medium [Internet]. Journal of Physics: Condensed Matter. 2008 ;20064242.[cited 2011 Apr 10] Available from: http://iopscience.iop.org/0953-8984/20/6/064242 78. Chen C-hung, Huang C-chia. Enhancement of hydrogen spillover onto carbon nanotubes with defect feature [Internet]. Microporous and Mesoporous Materials. 2008 Mar ;109(1-3):549-559.Available from: http://linkinghub.elsevier.com/retrieve/pii/S138718110700354X 79. Yang RT, Wang Y. Catalyzed hydrogen spillover for hydrogen storage. [Internet]. Journal of the American Chemical Society. 2009 ;131(12):4224-6.Available from: http://www.ncbi.nlm.nih.gov/pubmed/19249821 80. Sata S, Awad MI, El-Deab MS, Okajima T, Ohsaka T. Hydrogen spillover phenomenon: Enhanced reversible hydrogen adsorption/desorption at Ta2O5-coated Pt electrode in acidic media [Internet]. Electrochimica Acta. 2010 ;55(10):3528-3536.Available from: http://linkinghub.elsevier.com/retrieve/pii/S0013468610001507 81. Chen L, Cooper AC, Pez GP, Cheng H. Mechanistic Study on Hydrogen Spillover onto Graphitic Carbon Materials. Society. 2007 ;18995-19000. 82. Zacharia R, Rather S-ullah, Hwang SW, Nahm KS. Spillover of physisorbed hydrogen from sputter-deposited arrays of platinum nanoparticles to multi-walled carbon nanotubes [Internet]. Chemical Physics Letters. 2007 ;434(4-6):286-291.Available from: http://linkinghub.elsevier.com/retrieve/pii/S000926140601815X 83. Bhatia SK, Myers AL. Optimum conditions for adsorptive storage. [Internet]. Langmuir : the ACS journal of surfaces and colloids. 2006 Feb ;22(4):1688-700.Available from: http://www.ncbi.nlm.nih.gov/pubmed/16460092 84. Rather S-ullah, Naik M-ud-din, Hwang SW, Kim AR, Nahm KS. Room temperature hydrogen uptake of carbon nanotubes promoted by silver metal catalyst [Internet]. Journal of Alloys and Compounds. 2009 ;475(1-2):L17-L21.Available from: http://linkinghub.elsevier.com/retrieve/pii/S0925838808012231 85. Jeon K-joon, Moon HR, Ruminski AM, Jiang B, Kisielowski C, Bardhan R, et al. Air-stable magnesium nanocomposites provide rapid and high-capacity hydrogen storage without using heavy-metal catalysts [Internet]. Nature Materials. 2011 ;(March):1-5.Available from: http://dx.doi.org/10.1038/nmat2978
摘要: With recent ecological disasters both from the man made Gulf of Mexico oil spill accident and the naturally induced Fukushima nuclear crisis; there is never more of a time to consider the urgent need for clean alternatives for powering vehicles and communities. Low temperature and pressure are key requirements for realization of a hydrogen storage solution to further the use of hydrogen as an alternative fuel and energy vector. This study modified carbon nanotubes (CNTs) by chemical functionization and doping of metal particles to investigate their hydrogen adsorption ability. Some optimization of dopants and pressure investigation was done in order to compare and investigate the current mechanisms for hydrogen storage. An impressive room temperature hydrogen(H2) adsorption of 3.87%wt was achieved with sodium hypochlorite (NaOCl) modified CNTs, doped with titanium-based (TiO2) particles at a low 10bar of pressure loading. This is within the 12bar operating parameters of the USDOE Targets for onboard hydrogen storage systems. This result is the highest TiO2 modified CNTs experimental result known to this author. This modified CNT hydrogen storage study and provides an insight for further research in this field.
URI: http://hdl.handle.net/11455/5044
其他識別: U0005-2306201109442000
文章連結: http://www.airitilibrary.com/Publication/alDetailedMesh1?DocID=U0005-2306201109442000
Appears in Collections:環境工程學系所

文件中的檔案:

取得全文請前往華藝線上圖書館



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.