Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/5054
標題: 以生物濾床處理固定頂儲槽排氣之研究
Treatment of Waste Gases from Fixed Roof Storage Tanks via a Trickle Bed Air Biofilter System
作者: 黃筱芸
Huang, Hsiao-Yun
關鍵字: Trickle bed air biofilter (TBAB)
生物濾床
Fixed-roof storage tank
p-xylene
Standing storage losses
Working losses
固定頂儲槽
對-二甲苯
靜置損失
工作損失
出版社: 環境工程學系所
引用: 行政院環境保護署(2011)固定污染源空氣污染物排放標準 行政院環境保護署(2011)揮發性有機物空氣污染管制及排放標準 行政院環境保護署(2009)固定污染源空氣污染防制費收費費率 經濟部工業局工業安全衛生技術輔導網(2011)危險性機械設備安全管理實務手冊 工業技術研究院工業安全衛生技術發展中心(2011)MSDS 中技社(2005)揮發性有機空氣污染物管制及排放標準修正說明 魏銀河(2000)生物濾床處理五種樹脂工廠混合混合VOCs廢氣之研究國立中興大學環境工程學系碩士論文。 周明顯、鄭文熙(1994)以生物濾床法處理揮發性有機物-本土化濾材篩選研究。第十一屆空氣污染控制技術研討會,P.153~165. 張鴻鈞、鍾美華、黃思蓴(1994)生物濾床處理石化業苯乙烯排氣之可行性研究-現場測試報告。第十一屆空氣污染控制技術研討會,第145至151頁。 朱振華(1998)生物濾床法處理含BTEX廢氣程式控制之研究。國立中興大學環境工程學系碩士論文。 邱創汎、王耀銘、張坦卿(1996)空氣污染生物處理技術本土化之評析。工業污染防治,第58期,第111至123頁。 李秋緻(2007)以生物濾床法處理混合臭味物質之研究。國立中興大學環境工程學系碩士論文。 周明顯(2001)廢水處理場揮發性有機物排放量推估及防治技術評估。行政院環境保護署90年度空氣污染防治基金科技計畫。 高銘木、唐俊成(1995)不同生物濾材對氨及硫化氫除臭效率之影響。 第十二屆空氣污染控制技術研討會,第652至659頁。 陳家勳、朱文昌、盧重興、林明瑞(1995)生物濾床法處理含乙醇、丙酮廢氣之研究。第十二屆空氣污染控制技術研討會,第626至632頁。 郭至庭(2004)生物濾床之快速啟動及最佳化濾料之研究。國立中興大學環工系碩士論文。 許世杰(2003)生物濾床法應用於半導體實場操作之研究。國立中興大學環境工程學系碩士論文。 盧重興、林明瑞、林敬忠(1998)生物濾床法處理樹脂工廠廢氣之研究六種單一VOCs廢氣。第十五屆空氣污染控制技術研討會,第370至379頁。 林晉成、黃思蓴、李惠娟、李季眉(2000)“以純菌(Rhodococcus putida & Rhodococcus sp. 生物濾床處理含甲苯及乙酸乙酯混合廢氣之研究”第十七屆空氣污染控制技術研討會論文集,p.325~330。 盧重興、林志芳、張國財(2000)以模式探討生物濾床處理PU樹脂工廠廢氣之研究。第二十二屆輸送現象及其應用研討會p.387~390。 張國財(2003)生物濾床法處理光電產業揮發性有機廢氣之研究。國立中興大學環境工程學系博士論文。 廖偉勝(2009)以生物濾床法處理樹脂廠揮發性有機物質儲槽廢氣之研究。國立中興大學環境工程學系碩士論文。 行政院環境保護署環境檢驗所排放管道中總碳氫化合物及非甲烷總碳氫化合物含量自動檢測方法-線上火燄離子化偵測法(NIEA A723.72B) 行政院環境保護署環境檢驗所排放管道中氣態有機化合物檢測方法-採樣袋採樣/氣相層析火焰離子化偵測法(NIEA A722.73B) 97年臺中縣固定污染源許可、空污費審查及資料庫管理計畫,臺中縣環境保護局計畫 98年臺中縣固定污染源許可、空污費審查及資料庫管理計畫,臺中縣環境保護局計畫 98年臺中港區揮發性有機液體貯槽及裝載設施管制規範研擬計畫,臺中縣環境保護局計畫 99年臺中縣固定污染源許可、空污費審查及資料庫管理計畫,臺中縣環境保護局計畫 99年臺中縣揮發性有機物管制及減量計畫,臺中縣環境保護局計畫 100年度固定污染源空污費審查與揮發性有機物減量計畫期末報告,臺中市政府環境保護局計畫 Chang, K., Lu, C. S.,and Lin, M. R. 2001 “Treatment of Volatile Organic Compounds Emitted from A Polyurethane and Epoxy Manufacturer by a Trickle-bed Air Biofilter.” Journal of Bioscience and Bioengineering,Vol. 92, No 2, pp.126~130. Chang, K., Lu, C., 2003. Biofiltration of isopropyl alcohol and acetonemixtures by atrickle-bed air biofilter. Process Biochem. 39 (4), pp.415~423. Chang, K., Lu, C., Lin, M.R., 2001. Treatment of volatile organic compounds emitted from a polyurethane and epoxy resin manufacturer by a trickle-bed air biofilter. J. Biosci. Bioeng. 92 (2), pp.126~130 Chang, S.; Lu, C.; Hsu, S.; Lai, H.T.; Shang, W.L.; Chuang, Y.S.; Cho, C.H.; Chen, S.H. Treatment of waste gas from the breather vent of a vertical fixed roof p-xylene storage tank by a trickle-bed air biofilter; Bioresour. Technol. 2011, 102(2), pp.1028~1034. Chan, W.C., Lai, T., 2010. Compounds interaction on the biodegradationof acetone and methyl ethyl ketone mixture in a composite bead biofilter. Bioresour. Technol. 101 (1), pp. 126~130. Devinny J. S., Deshusses M. A., Webster T. S. 1998 “Biofiltration for air pollution control”, Lewis Publishers. Devinny J. S., Ramesh, J. 2005 ”A phenomenological review of biofilter models” Chemical Engineering Journal, Vol.113,pp.187~196 Evaluation of Trickle-bed Air Biofilter Performance as a Function of Inlet VOC Concentration and Loading, and Biomass Control.”ISSN 1047-3289,J. Air &Waste Mgmt. Assn., Vol. 48, pp. 627~636 Jantschak, A.; Daniels. M.; Paschold, R. Biofilter Technology: An Innovative and Cost-Effective System to Remove VOC; IEEE Transactions on Semiconductor Manufacturing 2004, 17, No. 3. Lu, C. S., Lin, M. R., and Chu, C. H. 1999 “Temperature Effects of Trickle-Bed Biofilter for Treating BTEX Vapors.” J. of Env. Eng., August, pp.775~779. Lu, C., Lin, M.R., Lin, J.C. Removal of acrylonitrile vapor from waste gases by a trickle-bed Air Biofilter; Bioresour. Technol. 2000a, 75(1), pp. 35~41. Lu, C., Lin, M.R., Chu, W.C., 2000b. Removal of BTEX vapor from waste gases by a trickle bed biofilter. J. Air Waste Manage. Assoc. 50 (3), pp. 411~417. Lu, C., Lin, M.R., Lin, J.C., 2001. Removal of styrene vapor from waste gas by a trickle-bed air biofilter. J. Hazard. Mater. B82(3), pp.233~245. Marsh, A. M., Nolen, S. L., Gess, P. S., and Baesen, T. A. 1992 “Control Odors from CPI Facilities.” Chem. Eng. Pro., Vol. 12, pp. 53~61 Mueller, J. C. 1988 “Biofiltration of Gases-a Mature Technology for Control of a Wide Range of Air Pollutants.” A Report to the National Research Council of Canada and the British Columbia Ministry of Advanced Education and Job Training, Project No. 2-51-797. Ockeloen, H. F., Overcamp, T. J. and Grady, C. P. L. 1992 “A Biological Fixed-Film Simulation Model for Removal of Volatile Organic Pollutants”, Presented at The 86th Annual Meeting & Exhibition, Air & Waste Management Association,June,Denver,Colorodo, USA. Ottengraf, S. P. P., Meesters J.J.P.,A.H.C. van den Oever and H.R. Rozema 1986 “Biological Elimination of Volatile Xenobiotic Compounds in Biofilters.” Bioprocess. Eng., Vol.1, pp.61-69. Richard W.Ziminski and John Yavorsky, ”Control of Hazardous Air Pollutants Using a Commercial Biofilter,” In 87th Annual Meeting & Exhibition of Air & Waste Management Asso , Cincinnati, Ohio, June19-24, 1994. Smith, F. L., Sorial, G. A., Suidan, M. T., and Biswas P.(1998)” United States Environmental Protection Agency. Organic Liquid Storage Tanks. In chapter 7 of Compilation of Air Pollutant Emission Factors, AP-42. Wani, A.H. Branion, R.M.R.; Lau, A.K. Biofiltration: a promising and cost-effective control technology for odours, VOCs and air toxics; J. Environ. Sci. Health 1997, A32(7), 2027-2055.
摘要: 本研究為密閉收集三座對-二甲苯(p-Xylene, p-X)固定頂儲槽排氣,以實場VOCS偵測器及參考美國「AP-42」推估公式進行逸散量比對。經由研究結果可知環境日均溫(TAA)、環境日溫差(△TA)、日照能量強度(I)以及槽內液面高度(HL)為靜置儲存損失(standing storage losses, LS)之主要影響因子,而儲槽輸儲量(Q)為工作損失(working losses, LW)之主要影響因子,其次則為環境日均溫及日照能量強度。於本研究期間內(2010/12/01~2012/05/31,共548天)三座p-X儲槽總輸儲量為88,975噸,儲槽累計逸散量為11,441 kg,生物濾床系統累計削減量為10,918 kg,去除率高達95.4%,顯示以生物濾床法處理儲槽VOCS逸散有良好去除效果,加上操作便利、適用種類多,且無二次污染問題等優點。 最後,以AP-42計算臺中港西碼頭儲槽於2011年的逸散量及應用生物濾床法之減量效益,經由計算可知儲槽總操作量為2,382千噸,年逸散量約為265噸,若利用生物濾床法處理可達到約225噸之年減量效益。
This study was collected the waste gas emitted from the breather vents of three analogous vertical fixed-roof p-xylene (p-X) liquid storage tanks. Used the online VOCS detector and the estimation formula of AP-42 from US EPA to compared the result of emission. The major effect factors of standing storage losses (LS) were daily average ambient temperature (TAA), daily ambient temperature range (△TA), daily total solar radiation (I), and the total daily average p-X liquid height of the tanks (HL). The major effect factor of working losses (LW) was the net throughput (Q) of the tanks, the minor effect factors were TAA and I. The study period were 548 days from December 1, 2010 to May 31, 2012, the annual net throughput of the tanks reached 88,975 tons resulting 11,441 kg of p-X vapor emission, the accumulated reduction amounts of trickle bed air biofilter system (TBAB system) were 10,918 kg, and giving an annual removal efficiency of 95.4%, It could be obvious that there were had a good removal effect in which used the TBAB system to treatment the VOCS where emission from the tanks, and the TBAB system also had some advantage, such as convenience of operation, can applicable to many kinds of VOCS, and won't lead to secondary pollution or other problems in the future. Using the estimation formula of AP-42, the emission amounts of the storage tanks during 2011 were calculated and thus obtained the reduction effectiveness of TBAB system. The annual net throughput of the tanks reached 2,382 kilo-tons resulting 265 tons of VOCS emission, and if use the TBAB system to treatment, there will be reduced more than 225 tons of VOCS.
URI: http://hdl.handle.net/11455/5054
其他識別: U0005-2506201216304100
文章連結: http://www.airitilibrary.com/Publication/alDetailedMesh1?DocID=U0005-2506201216304100
Appears in Collections:環境工程學系所

文件中的檔案:

取得全文請前往華藝線上圖書館



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.