Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/5056
DC FieldValueLanguage
dc.contributor盧至人zh_TW
dc.contributorChih-Jen Luen_US
dc.contributor張錦松zh_TW
dc.contributorJing-Song Changen_US
dc.contributor.advisor廖文彬zh_TW
dc.contributor.advisorWen-Bin Liaoen_US
dc.contributor.author林士宏zh_TW
dc.contributor.authorLin, Shi-Hongen_US
dc.contributor.other中興大學zh_TW
dc.date2013zh_TW
dc.date.accessioned2014-06-06T06:33:54Z-
dc.date.available2014-06-06T06:33:54Z-
dc.identifierU0005-2506201223430900zh_TW
dc.identifier.citation(1)圖書 石濤,環境微生物、鼎茂圖書出版股份有限公司 第270-271頁,2010。 蕭蘊華,傅崇德譯,環境工程化學第四版,上冊,美商麥格羅希爾公司,滄海書局,第257-260頁,1995。 蕭蘊華,傅崇德,許鼎君譯,環境工程化學第四版,下冊,美商麥格羅希爾公司,滄海書局,第629-634頁,1995。 (2)論文 杜松翰,沉浸式生物薄膜系統之阻塞機制與清洗方式探討,碩士論文,國立交通大學環境工程研究所,2004。 胡國良,無機性顆利對不織布薄膜生物反應器過濾特性之影響,碩士論文,朝陽 科技大學環境工程學系,1994。 莊育權,好氧顆粒薄膜生物反應器的好氧顆粒穩定性及薄膜積垢探討,博士論文國立臺灣大學工學院化學工程研究所,2010。 張王冠、洪仁陽、張敏超、邵信,Web-生物薄膜反應器廢水處理操作參數之研究,第十三屆環境工程年會廢水研討會論文集,高雄,2001。 陳之貴,活性污泥/接觸曝氣法合併系統之處理功能研究,博士論文,國立臺灣大學環境工程學研究所,2006。 陳重男、倪振鴻、陳建銘,生物薄膜程序處理都市生活汙水回收再利用之探討,第二十六屆廢水處理技術研討會論文摘要集,2002。 蔡婉楹,好氧及厭氧生物程序處理含油脂廢水與生質能之回收,碩士論文,國立成功大學環境工程學系,2008。 (3)期刊 方茜、陳鳳岡、劉宏遠、徐桂琴,兩種序批式生物系統處理屠宰廢水的對比試驗,中國給水排,16,pp. 7,2000。 李志東、李娜、張洪林、魏麗、張令戈、酒井裕司、中尾真一 , 一體式膜生物反應器處理屠宰廢水,環境工程,,25,pp. 3,2007。 李秀芬、張麗娜、李靖梅、陳堅、堵國成,pH對膜污染會EPS污染特徵的影響及機理分析”膜科學與技術,12,29,pp. 6,2009。 李偉光、趙慶良、馬放、劉宏遠、徐桂琴,序批式生物膜反應器處理屠宰廢水,中國給水排水,16,10、pp. 59~60,2000。 段豔平 ,代朝猛 ,曾 科 ,李亞萍 “含脂類廢水處理研究進展” 工業廢水處理,28,2,2008。 張西永、胡晉濤,城市屠宰廠廢水及其處理,環境科學期刊,3,pp. 30-32,1997。 童浩,膜生物反應器在屠宰廢水中的應用,環境科學期刊,28,pp. 57-59,2009。 鄭祥、樊耀波,影響生物薄膜反應器處理效果及膜通量的因素研究,中國給水排水,18,pp. 1,2002。 劉旭東、王恩德,應用膜生物反應器處理屠宰廢水的中試研究,環境保護科學,30,pp. 2,2004。 (4)網路資源 三廢處理技術網,屠宰廢水的處理技術方案,2009-03-01。 http://www.nosea.net/html/fs/20090301/365.html 水污染控制工程,活性污泥淨化水的機理。 http://www.jyu.edu.cn/huaxue/kejian/shuiwurankzgc/jxkj/cha7/chapterone3.htm 南京瑞潔特膜分離科技有限公司,屠宰廢水處理生物薄膜反應器解決方案。 http://www.goepe.com/upload/js/fujian/1305019127.pdf 順賀行企業有限公司 http://www.neweiko.com.tw/nikkiso/Nikkiso_BB.pdf 新世膜科技股份有限公司 http://www.ncm.com.tw/driver_list.asp 經濟部工業區94年環安人員培訓班教材,盧至人,活性污泥系統操作與污泥減量,國立中興大學環境工程學系。 http://ebooks.lib.ntu.edu.tw/1_file/moeaidb/013431/940526a.pdf 新疆西河子大學,第四章,血液。 http://202.201.162.132/dk/jiaxsl/wlkc/wlkc04.htm 樂清騰祥膜技術有限公司,膜-生物反應器(生物薄膜反應器)技術手冊, 2010/03/28。 http://www.yqtxmo.com/uploadfile/others/2010102911311822112.pdf (5)其他 阮國棟,油脂之污染特性及處理技術,工業污染防治第30期,1989。 范姜仁茂、莊連春、曾迪華、廖述良、游勝傑、梁德明,薄膜生物反應器於廢水處理之技術評析,工業污染防治季刊第109期,2009。 張王冠,高級生物處理技術介紹與應用-薄膜生物處理技術,工業技術研究院能源與環境研究所,2007/12/27。 歐陽嶠暉,活性污泥操作手冊,經濟部工業局,中國技術服務社工業污染防治技術服務團編,1986。 歐陽嶠暉,食品工廠廢水污染防治,經濟部工業局,中國技術服務社工業污染防治技術服務團編,1986。 廢水處理功能生物診斷技術更新版,工業污染防治技術手冊,經濟部工業局編印,2006。 行政院環保署,水污染防治法事業分類及定義,2010。 英文部份 (1) Book Rittmann, B.E. and McCarty, PL., 2001. “Environmental Biotechnology Principle and Applications.” International Edition , McGraw-Hill, New York, pp. 126-121, 569-627 Stephenson, T., Judd, S. Jefferson, B. and Brindle, K., 2002. Membrane Bioreactors for Wastewater Treatment. 2th ed., ISBN:19-00222078, IWA Publishing pp.30. Wade, L.G., 1999. Organic Chemistry, Prentice-Hall, New Jersey, pp.1164-1168. (2) Journal Aticles Beard, J. L., Dawson H. and Pinero, D. J., 1996. “Iron metabolism: a comprehensive review.” Nutrition Reviews, Vol. 54, No. 10, pp. 295-317. Beatrice, B., Geneviev, G. G., Bernard, C., Murielle, R. B. and Georges, D.,2002. “Treatment of dairy process waters by membrane operations for water reuse and miconstituents concentration.” Desalination, Vol. 147, No. 1, pp. 89-94. Becker, P., Koster, D., Popov, M.N., Markossian, S., Antranikian, G. and Maerkl, H., 1999. “The biodegradation of olive oil and the treatment of lipid-rich wool scouring wastewater under aerobic thermophilic conditions.” Water Research, Vol. 33, No. 3, pp. 653-660. Bellona, C., Drewes, J. E., Xu, P. and Amy, G., 2004. “Factors affecting the rejection of organic solutes during NF/RO treatment─a literature review.” Water Research, Vol. 38, No. 12, pp. 2795-2809. Brepols, E., Dorgeloh, Frechen, F.B., Fuchs, W., Haider, S., Joss, A., de Korte, K., Ruiken, Ch., Schier, W., Roesth, van der H., Wetti, M. and Wozniak, Th., 2008.“Upgrading and retrofitting of municipal wastewater treatment plants by means of membrane bioreactor (MBR) technology.” Desalination,Vol. 231, No. 1 pp. 20–26. Chang, I. S., Le-Clech, P. Jefferson, B., and Judd, S., 2002. “Membrane Fouling in Membrane Bioreactors for Wastewater Treatment.” Journal of Environmental Engineering, Vol. 128, No. 11 pp. 1018-1029. Choo, K.H. and Lee, C.H., 1998. “Hydrodynamic behavior of anaerobic biosolids during crossflow filtration in the membrane anaerobic bioreactor.” Water Research; Vol. 32, No. 11, pp. 3387–3397. Cirja, M., Ivashechkin, P., Schaffer, A., and Corvini, P. F. X., 2008. “Factors Affecting the Removal of Organic Micropollutants from Wastewater in Conventional Treatment Plants (CTP) and Membrane Bioreactors (MBR).” Reviews in Enviromental Science and Biotechnology, Vol. 7, No. 1, pp. 61-78. Ducom, G., Puech F.P. and Cabassud, C., 2002. “Air sparging with flat sheet nanofiltration: a link between wall shear stresses and flux enhancement.” Desalination, Vol.145, No.1 ,pp.97–102. Emery, T., 1982. "Iron metabolism in humans and plants." American Scientist, Vol. 70, No. 6, pp. 626. Germain, E. and Stephenson, T., 2005. “Biomass Characteristics, Aeration and OxygenTransfer in Membrane Bioreactors: Their Interrelations Explained by a Review of Aerobic Biological Process.” Reviews in Environmental Science and Biotechnology, 4, pp. 223-233. Ho, C.C. and Zydney, A. L., 2006. “Overview of Fouling Phenomena and Modeling Approaches for Membrane Bioreactors.” Separation Science and Technology, Vol. 41, No. 7, pp. 1231-1251. Judd, S., 2004. “A Review of Fouling of Membrane Bioreactors in Sewage Treatmen.,” Water Science and Technology, Vol. 49, No. 2,pp. 229-235. Le-Clech, P., Fane, A. and Leslie, G., 2005. “MBR Focus: The Operators Perspective.” Filtration and Separation, Vol. 42,No. 5, pp. 20-23. Le-Clech , P., Chen, V. and Fane, T. A. G., 2006. “Fouling in Membrane Bioreactors Used in Wastewater Treatment.” Journal of Membrane Science, Vol. 284, pp. 17-53. Liao, B. Q., Bagley, D. M., Kraemer, H. E., Leppard, G. G. and Liss, S. N., 2004. “A Review of Biofouling and its Control in Membrne Separation Bioreactors.” Water Environmental Research, Vol. 76, No. 5, pp. 425-436. Liao, B. Q., Kraemer, J. T. and Bagley, D. M., 2006. “Anaerobic Membrane Bioreactors:Applications and Research Directions.” Critical Reviews in Environmental Science and Technology, Vol. 36, No. 6, pp. 489-530. Melin, T., Jefferson, B., Bixio, D., Thoeye, C., Wilde, W. D., Koning, J. D., vander, G. J. and Wintgens, T., 2006. “Membrane Bioreactor Technology for Wastewater Treatment and Reuse.” Desalination, Vol. 187, No. 1, pp. 271-282. Meng, F., B. Shi, F. Yang, and H. Zhang, 2007. “New Insights into Membrane Fouling in Submerged Membrane Bioreactor Based on Rheology and Hydrodynamics Concepts.” Journal of Membrane Science, Vol. 302, No. 1, pp. 87-94. Pierre, C., H. Buissom, and M. Praderie, 1998. “Membranes activated sludge process applied to the treatment of municipal wastewater.” Water Science and Technology, Vol. 38, No. 1, pp. 437-442. Pollice, A., Brookes, A., Jefferson, B. and Judd, S., 2005. “Sub-Critical Flux Fouling in Membrane Bioreactors—A Review of Recent Literature.” Desalination, Vol. 174, No. 3 pp. 221-230. Schwarz, A. O., Rittmann, B. E., Crawford, G. V., Klein, A. M. and Daigger, G. T., 2006. “Critical Reviews on the Effects of Mixed Liquor Suspended Solids on Membrane Bioreactor Operation.” Separation Science and Technology, Vol. 41, No. 7 pp. 1489-1511. Seong-Hoon Yoon, and John, H. Collins, 2006. “A novel flux enhancing method for membrane bioreactor(MBR) process using polymer.” Desalination, Vol. 191, No. 1, pp. 52–61. Seyfried, A., Dorgeloh, E., Brands, E. and Ohle, P., 1998. “Effects of the membrane technology on the dimensioning of municipal wastewater treatment plants.” Water Science Technology, Vol. 38, No. 3, pp.173-178. Smith, JR. and Clifford. V., 1969. “The use of ultrafiltration membranes for activated sludge separation.” Proc 24rd Ind. Waste conference., Purdue University, Arbor Science. Ann Arbor, USA, 1300-1310. Sofia, A., Ng, W. J. and Ong, S. L., 2004. “Engineering Design Approaches for Minimum Fouling in Submerged MBR.” Desalination, Vol. 160, pp. 67-74. Tano-Debrah K., Seijiro F., Naoki O., Futoru T. and Michihito O., 1999 “An inoculum for the aerobic treatment of wastewaters with high concentrations of fats and oils.” Bioresour TechnolV, Vol. 69, pp. 133-139 Trussell, R. S., Merlo, R. P., Hermanowicz, S. W., and Jenkins, D., 2007. “Influence of Mixed Liquor Properties and Aeration Intensity on Membrane Fouling in a Submerged Membrane Bioreactor at High Mixed Liquor Suspended Solids Concentrations.” Water Research, Vol. 41, No. 5, pp. 947-958. TSI., 2002. “Mechanisms of filtration for high efficiency fibrous filters application.” Note ITI-041. Ueda, T., Hata, K., Kikuoka, Y. and Seino, O., 1997. “Effects of aeration on suction pressure in a submerged membrane bioreactor.” Water Research, Vol. 31, No. 3, pp. 489–494. Visvanathan, C., Aim, R. B. and Parameshwaran, K., 2000. “Membrane Separation Bioreactors for Wastewater Treatment.” Critical Reviews in Environmental Science and Technology, Vol. 30, No. 1, pp. 1-48. Yang, Q., Chen, J. and Zhang, F., 2006. “Membrane Fouling Control in a Submerged Membrane Bioreactor with Porous, Flexible Suspended Carriers.” Desalination, Vol. 189, No. 1 pp. 292-302. Yang, W., Cicek, N. and Ilg, J., 2006. “State-of-the-art of membrane bioreactors: Worldwide research and commercial applications in North America.” Journal of Membrane Science, Vol. 270, No. 1, pp. 201-211.zh_TW
dc.identifier.urihttp://hdl.handle.net/11455/5056-
dc.description.abstract本研究探討生物薄膜反應系統其應用於屠宰業廢水處理之合宜性,並比較生物薄膜反應器模型與活性污泥法,於相同水力停留時間8小時之下,兩者之間去除效率,及未來生物薄膜反應器於屠宰業廢水處理的可行性。 本研究之屠宰廢水,水質濃度變化較大,有機物含量高等特點,倘若直接排入環境將將嚴重影響生存環境。屠宰業所產生之廢水,為高濃度有機廢水,一般利用生物處理法來處理其廢水。一般採用生物薄膜反應器之生物處理法,其設備佔地空間小、污泥產生量為活性污泥法的一半、維修方便、可承受原廢水較大之濃度變化及水質異常時,仍不影響懸浮固體之去除效果,且原廢水所需之處理時間比活性污泥法短等優點。 本研究之生物薄膜反應器模組,其停留時間為8-9小時。總運轉天數共65天,並於第15天、第30天、第60天,分別檢測其採樣水與出流水之水質項目。於穩定操作之下,其數據顯示化學需氧量、懸浮固體、生化需氧量、油脂、真色色度的去除效率分別為:98.9%、98.8%、98.3%、98.8%、98.5%。 本研究之實廠廢水設備,其水力停留時間為10-21小時。根據往年共8份水質項目數據。歸納出化學需氧量、懸浮固體、生化需氧量、油脂、真色色度的去除效率分別為:87.1%、98.4%、90.8%、88.8%、93.1%,而停留時間超過8小時之後,油脂與真色色度的去除效果,會隨著停留時間的延長,而有所增加,但化學需氧量、生化需氧量、懸浮固體三項水質項目,其去除效率並無明顯不同。 生物薄膜反應器之去除效率,以各水質項目來看,皆優於活性污泥/接觸曝氣法。另外,本研究之採樣水,其油脂含量小於60 mg/L,於運轉期間,並無造成生物薄膜反應器之薄膜通量有明顯改變的情形。可說明生物薄膜反應器在良好操作之下,可有效將油脂有效分解,並不影響生物薄膜反應器之正常操作。 關鍵字:薄膜生物反應槽;活性污泥法;接觸曝氣法;屠宰業;油脂zh_TW
dc.description.abstractA membrane bioreactor (MBR) is employed in this study to probe its application and suitability in wastewater treatment of slaughtering industry. This paper compares MBR with activated sludge method for 8 hours in the same hydraulic retention time (HRT) to observe different removal efficiency between them, as well as to evaluate the feasibility of membrane bioreactor in the treatment of wastewater from slaughterhouses. The wastewater presented here is from an abattoir. Therefore, the water quality could be fluctuating and containing high levels of organic matters. It would seriously affect the living environment if discharging it into the seas or rivers. Because the wastewater contains high concentration of organic matters, the common method is to use the biological treatment to process. On the other hand, the membrane bioreactor does not occupy much room and the amount of the sludge is half of that by the activated sludge method. Moreover, it is easily to maintain and can sustain the fluctuating waste concentration and water anomaly without affecting the removal of suspended solids along with saving more time to process the wastewater. The HRT of the membrane bioreactor in this study is 8-9 hours, the total operation days are 65 days. In the 15th, 30th and the 60th day, we examined the water samples and the effluent water quality. Under the stable operation, the data showed the removal epicenes percentages of COD, SS, BOD, grease and C are 98.9%, 98.8%, 98.3%, 98.8% and 98.5% respectively. According to the data from last year, the HRT of the equipment in this study is 10-12 hours. The removal percentages of chemical oxygen demand (COD), suspended solid (SS), biochemical oxygen demand (BOD), grease, and color (C) are 87.1%, 98.4%, 90.8%, 88.8%, and 93.1%, respectively. The removal efficiency of grease and C would increase as the HRT extended, for example, for eight hours. The COD, BOD and SS, on the other hand, did not show any specific differences. From the results of examined water samples, the removal efficiency of the membrane bioreactor is more progressive than the activated sludge and contact aeration method. Furthermore, the oil amount of the sampling water in this study is smaller than 60 mg/L. During the operation, there is no obvious change to membrane flux of membrane bioreactor, which means it is effective to decompose grease under the well-performed operation without affecting the performance of membrane bioreactor. Keyword: MBR;Activated sludge process;contact aeration;Slaughtering industry;Greaseen_US
dc.description.tableofcontents目錄 致謝辭 摘要.......................................................I ABSTRACT..................................................II 目錄......................................................IV 表目錄..................................................VIII 圖目錄.....................................................X 第一章 前言................................................1 1.1 研究動機...............................................1 1.2研究目的................................................1 1.3 研究架構...............................................2 第二章 文獻回顧............................................5 2.1 食業品定義.............................................5 2.1.1 食品廢水特性.......................................5 2.1.2屠宰作業過程及廢水來源..............................6 2.1.3 屠宰廢水特性.......................................8 2.1.4 單位污染負荷量.....................................9 2.2 油脂廢水的處理概況....................................10 2.2.1 油脂的特性........................................10 2.2.2 油脂的代謝途徑....................................10 2.2.3 油脂對環境的影響..................................11 2.2.4 油脂處理方法概述..................................14 2.3 食品廢水之生物處理法與其機制..........................17 2.3.1 生物過濾法之機制..................................17 2.3.2 好氧生物處理法之機制..............................19 2.4 生物薄膜反應器........................................25 2.4.1薄膜種類與操作概況.................................25 2.4.2 生物薄膜反應器積垢清洗技術........................29 2.4.3 生物薄膜反應器與接觸曝氣之比較....................33 2.5 生物薄膜反應器操作模式...............................37 2.5.1 曝氣..............................................38 2.5.2 ph值..............................................38 2.5.3 溫度..............................................39 2.5.4 MLSS..............................................39 2.5.5 溶氧..............................................40 2.5.6 水力停留時間......................................40 第三章 研究方法及實驗設備.................................43 3.1 實廠介紹.............................................43 3.1.1 實廠廢水處理設備管理..............................45 3.1.2 廢水管理措施......................................48 3.2 污泥來源及進流水成份.................................49 3.3 生物薄膜反應器系統建立...............................51 3.3.1 實驗設備..........................................51 3.3.2 生物薄膜反應器操作條件............................58 3.4 實驗方法.............................................61 3.4.1 採樣水採集時間....................................61 3.4.2 採樣水採集方式....................................61 3.4.3 採樣水採集頻率....................................61 3.5 實驗分析.............................................63 3.5.1 生物薄膜反應器水值分析來源........................63 3.5.2 水質檢測項目......................................63 3.5.3 檢測方法..........................................63 3.5.4 生物薄膜反應器之其他檢測項目......................66 3.5.5 生物薄膜反應器水質分析頻率........................66 3.5.6 實廠水質數據來源..................................66 3.6 生物薄膜反應器之油脂處理..............................67 3.6.1 薄膜選擇..........................................67 3.7 生物薄膜系統操作階段..................................69 第四章 分析結果與討論.....................................71 4.1 生物薄膜反應器運作改善................................71 4.2 實廠水質變化..........................................75 4.2.1 實廠水質化學需氧量之變化..........................77 4.2.2 實廠水質生化需氧量之變化..........................79 4.2.3 實廠水質懸浮固體之變化............................81 4.2.4 實廠水質油脂之變化................................83 4.2.5 實廠水質真色色度之變化............................85 4.2.6 實廠水質pH、水溫之變化............................87 4.3 生物薄膜反應器水質變化................................89 4.3.1 生物薄膜反應器化學需氧量、生化需氧量水質變化......90 4.3.2 生物薄膜反應器油脂、真色色度水質變化..............92 4.3.3 生物薄膜反應器懸浮固體水質變化....................95 4.3.4 生物薄膜反應器系統ph、水溫水質變化................97 4.3.5 本研究之生物薄膜程序之污泥產生量計算.............100 4.4 活性污泥/接觸曝氣與生物薄膜反應器系統探討............101 4.4.1 去除效率與機制之比較.............................101 4.4.2 處理系統與操作成本之比較.........................105 4.4.3 生物薄膜反應器之規劃.............................110 第伍章 結論與建議........................................115 5.1 結論................................................115 5.2 建議................................................116 參考文獻.................................................117 附錄.....................................................127 表目錄 表2.1 食品產業別...........................................5 表2.2 本研究之屠宰廢水水質.................................8 表2.3 實廠一頭豬之污染負荷量...............................9 表2.4 估計不同成分的長鏈不飽和脂肪酸油脂於每克所產生化學需氧量........................................................12 表2.5 各種油脂每克所產生化學需氧量........................13 表2.6 各種油水分離及油脂分解方法之比較....................15 表 2.7影響薄膜出水的因素..................................27 表 2.8生物薄膜反應器系統常見問題..........................30 表 2.9生物薄膜反應器的薄膜積垢控制技術....................32 表 2.10傳統活性污泥vs.生物薄膜反應器......................34 表3.1本研究實廠之處理單源參數.............................47 表3.2功能測試數據.........................................50 表3.3歷年水質申報資料.....................................50 表3.4 BB50定量泵規格......................................52 表3.5實驗用膜組相關技術資料...............................54 表4.1活性污泥的分類、數量百分比及定義.....................76 表4.2實廠化學需氧量之水質變化.............................77 表4.3實廠生化需氧量之水質變化.............................79 表4.4實廠懸浮固體之水質變化...............................81 表4.5實廠油脂之水質變化...................................83 表4.6實廠真色色度之水質變化...............................86 表4.7實廠pH、水溫之水質變化...............................87 表4.8生物薄膜反應器化學需氧量、生化需氧量水質變化.........90 表4.9生物薄膜反應器化學需氧量、生化需氧量去除效率比較表...91 表4.10生物薄膜反應器油脂、真色色度水質變化................92 表4.11生物薄膜反應器油脂、真色色度去除效率比較表..........93 表4.12生物薄膜反應器懸浮固體水質變化......................95 表4.13生物薄膜反應器pH、水溫水質變化......................97 表4.14實廠效率比較表.....................................102 表4.15生物薄膜反應器應用屠宰廢水之研究表.................103 表4.16去除機制之差異.....................................104 表4.17生物薄膜系統與活性污泥/接觸曝氣程序之比較..........105 表4.18生物薄膜反應器系統建議處理單元與機械設備...........112 圖目錄 圖 1.1 研究流程圖..........................................4 圖 2.1 屠宰作業流程圖......................................6 圖 2.2 生物濾床之構造.....................................17 圖 2.3 砂層內的絮團去除過程...............................18 圖 2.4 有機物去除機能圖...................................20 圖 2.5 一種輸鐵載體之構造.................................23 圖 2.6 微生物輸送鐵的一種典型模式.........................23 圖 3.1 生物薄膜系統之實廠安裝圖...........................44 圖 3.2 實廠廢水設備處理流程圖.............................46 圖 3.3 生物薄膜反應器系統流程圖...........................51 圖 3.4 出流、反沖洗泵.....................................52 圖 3.5 生物薄膜反應器膜組與槽體...........................53 圖 3.6 鼓風機.............................................55 圖 3.7 PLC控制箱..........................................56 圖 3.8 溶氧檢測儀器.......................................56 圖 3.9 手提式pH偵測器.....................................57 圖 3.10 生物薄膜反應器槽體操作情形........................58 圖 3.11出流水收集兼反沖洗桶...............................59 圖 3.12 生物薄膜反應器膜組試驗全景圖......................59 圖 4.1 試運轉期間溶氧監測數值.............................72 圖 4.2 模組安裝改善示意圖.................................72 圖 4.3 微生物之增殖過程...................................80 圖 4.4 生物薄膜反應槽混和液pH監測圖.......................98 圖 4.5 生物薄膜反應程序之建議流程........................110 圖 4.6 生物槽內之薄膜分組設置示意圖......................114zh_TW
dc.language.isoen_USzh_TW
dc.publisher環境工程學系所zh_TW
dc.relation.urihttp://www.airitilibrary.com/Publication/alDetailedMesh1?DocID=U0005-2506201223430900en_US
dc.subjectMBRen_US
dc.subject薄膜生物反應槽zh_TW
dc.subjectActivated sludge processen_US
dc.subjectcontact aerationen_US
dc.subjectSlaughtering industryen_US
dc.subjectGreaseen_US
dc.subject活性污泥法zh_TW
dc.subject接觸曝氣法zh_TW
dc.subject屠宰業zh_TW
dc.subject油脂zh_TW
dc.title沉浸式薄膜生物處理系統於實廠應用之評估-以屠宰廠為例zh_TW
dc.titleFeasibility study of membrane bioreactor system -in the Slaughtering industryen_US
dc.typeThesis and Dissertationzh_TW
Appears in Collections:環境工程學系所
文件中的檔案:

取得全文請前往華藝線上圖書館



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.