請用此 Handle URI 來引用此文件: http://hdl.handle.net/11455/5070
標題: 利用隨意渦流累積系統觀測水稻田溫室氣體CH4及CO2之探討
Fluxes of CH4 and CO2 over the rice paddy using relaxed eddy accumulation method
作者: 張晉豪
Chang, Chin-Hao
關鍵字: Flux
paddy field
Relaxed Eddy Accumulation(REA)
Eddy Covariance(EC)
β value
出版社: 環境工程學系所
引用: Arya, S. Pal., 2001. Introduction to micrometeorology. 2nd Edition, pp.420, Academic Press. Armentano, T. B. and E. S. Menges, 1986. Patterns of changes in the carbon balance of organic soil wetlands of the temperate zone. Journal of Ecology, 74, pp. 735-744. Baker, B., Guenther, A., Greenberg, J., Goldstein, A., Fall, R., 1999. Canopy fluxes of 2-methyl-3-buten-2-ol over a ponderosa pine forest by relaxed eddy accumulation: field data and model comparison. J. Geophys. Res. 104, 26107-26114. Beverland, I. J., D. H. Oneill, S. L. Scott, and J. B. Moncrieff, 1996. Design, construction and operation of flux measurement system using the conditional sampling technique. Atmospheric Environment, vol. 30, pp. 3209-3220, Bouwman, A. F., 1990b. Agronomic aspects of wetlands rice cultivation and associated methane emission. Biochem. 15: 65-88. Bowling, D. R., A. A. Turnipseed, A. C. Delany, D. D., Baldocchi, J. P. Greenberg, and R. K. Monson, 1998. The use of relaxed eddy accumulation to measure biosphere-atmosphere exchange of isoprene and other biological trace gases. Oecologia, vol. 116, pp. 306-315. Brut, A., D. Legain, P. Durand, and P. Laville., 1998. A Relaxed Eddy Accumulator for Surface Flux Measurements on Ground-Based Platforms and Aboard Research Vessels. American Meteorological Society, 21,411-427. Businger, J. A. and Oncley, S. P., 1990. Flux measurement with conditional sampling. Journal of Atmospheric and Oceanic Technology, 7, 349-352. Cao, M. and J. B. Dent, 1995. Modeling methane emission from rice paddies. Global Biogeochem. Cycles, 9, pp. 183-195 Cicerone, R. J., and R. S. Oremlan, 1988. Biogeochemical aspects of atmospheric methane. Global Biochem Cycles 2: 299-327. Christensen, C.S., Hummelshøj, P., Jensen, N.O., Larsen, B., Lohse, C., Pilegaard, K., Skov, H., 2000. Determination of the terpene flux from orange species and Norway spruce by relaxed eddy accumulation. Atmos. Environ. 34, 3057-3067. Delwiche, C. C. and R. J. Cicerone, 1993. Factors affection methane production under rice, Glob Biogeochem Cycles 7, pp. 143-55. Desjardins, R. L., 1977. Description and evaluation of a sensible heat flux detector. Boundary Layer Meteorology, 11, 147-154. Desjardins, R. L., S. N. Kulshreshtha, B. Junkins, W. Smith, B. Grant, and M. Boehm. 2001. Canadian greenhouse gas mitigation options in agriculture. Nutr. Cycl. Agroecosyst. 60: 317-326. Ehhalt, D. H. and U. Schmidt, 1978. Sources and sinks of atmospheric methane. PAGEOPH. 116:452-464. Etiope G., R. W. Klusman, 2002. Geologic emissions of methane to the atmosphere, Chemosphere, 49, pp. 777-789 Frenzel, P. F. Rothfuss, and C. Conrad, 1992. Oxygen profiles and methane turnover in a flooded rice microcosm. Bil. Fertil. Soils 12:28-32. Gaman, A., Rannik, U., Aalto, P., Pohja, T., Siivola, E., Kulmala, M., Vesala, T., 2004. Relaxed eddy accumulation system for size-resolved aerosol particle flux measurements. J. Atmos. Ocean. Tech. 21, 933-943. Gorham, E, 1991. Northern pearlands: role in the carbon cycle and probable responses to climatic warming. Ecol. Appl.1: 182-195. Guenther, A., Baugh, W., Davis, K., Hampton, G., Harley, P., Klinger, L., Vierling, L., Zimmerman, P., Allwine, E., Dilts, S., Lamb, B., Westberg, H., Baldocchi, D., Geron, C., Pierce, T., 1996. Isoprene fluxes measured by enclosure, relaxed eddy accumulation, surface layer gradient, mixed layer gradient, and mixed layer mass balance techniques. J. Geophys. Res. 100, 18555-18567. Haapanala, S., Rinne, J., Pystynen, K.-H., Helle´n, H., Hakola, H., Riutta, T., 2006. Measurements of hydrocarbon emissions from a boreal fen using REA technique. Biogeosciences 3, 103-112. Houghton, R. A. and J. L. Hackler, 1999. Emission of carbon from forestry and land-use changes in tropical Asia. Glob. Change Biol. 5: 481-492. Hyvonen, S., Vesala, T., Kulmala, M., 2007. Measurements of aerosol particle dry deposition velocity using the relaxed eddy accumulation technique. Tellus 59B, 381-386. IPCC (Intergovenment Panel onClimate Change). 1996a. Climate Chagne 1995, the Science of Climate Change. Contribution of Working Group I to the Second Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, UK. IPCC (Intergovenment Panel on Climat Change). 2000. Land use, land-use change and forestry. IPCC special report. Cambridge University Press, Cambridge,UK. IPCC (Intergovenment Panel on Climate Change). 2001. IPCC Third Assessment Report-Climatic Change 2001: Technical summary. Cambridge University Press, Cambridge. IPCC (Climate change) 2007, Couplings Between Changes in the Climate System and Biogeochemistry [R/OL]. http://www.ipcc.ch/pdf/assessment-report/ar4/wgl/ar4-wgl-chapter7.pdf Kaimal, J.C., and J.J. Finnigan, 1994. Atmospheric boundary layer flows:Their structure and measurement. Oxford university press, 289pp. Katul G. G., P.L. Finkelstein, J.F. Clarke and T.G. Ellestad, 1996. An investigation of the conditional sampling method used to estimate fluxes of active, reactive and passive scalars. J Appl Meteorol 35:835–1845. Katul, G.G., Poggi, D., Cava, D., Finningan, J., 2006. The relative importance of ejections and sweeps to momentum transfer in the atmospheric boundary layer. Boundary-Layer Meteorol. 120, 367-375. Khalil, M.A.K., Shearer, M.J., Rasmussen, R.A., Changlin, D., Ren Lixin, 2008. Production, oxidation, and emissions of methane from rice fields in China. J. Geophys. Res. 113, G00A04, doi:10.1029/2007JG000461. Kimura, M., H. Murakami, and H. Wada, 1991. CO2, H2, and CH4 production in rice rhizoshpere. Soil Sci. Plant Nutr. 37: 55-60. Lal, R., 1999. Soil management and restoration for C sequestration to mitigate the accelerated greenhouse effect. Prog.Environ. Sci. 1: 307-326. Liu, C. W., and Wu C. Y., 2004. Ecaluation of methane emissions from Taiwanese paddies. Science of the Total Environment, 333, pp. 195-207. Meek, D. W., and J. H. Prueger, 1998. Solutions for three regression problems commonly found in meteorological data analysis. American Meteorological Society, pp. 141-145. Mer, J. L., and P. Roger, 2001. Production, oxidation, emission and consumption of methane by soils: a review. Enr. J.Soil Biol. 37: 25-50. Minami, K, 1997. Mitigation of nitrous oxide emission from fertilized soils. Program and Extended Abstracts of International Symposium on Atmosphere Chemistry and Future Global Environment, pp. 179-182, held by International Global Atmosphere Chemistry, Nagoya, Japan, November 11-13. Miyata, A., Leuning, R., Thomas, O., Denmead, Kim, J., Harazono, Y., 2000. Carbon dioxide and methane fluxes from an intermittently flooded paddy field. Agric. Forest Meteorol. 102, 287–303, doi:10.1016/S0168-1923(00)00092-7, ISSN 0168-1923. Monin, A.S., and A.M. Obukhov, 1954. Basic laws of turbulent mixing in the atmosphere near thr ground. Akad. Nauk. SSR., Geophiz Inst., vol. 24, pp. 163-187. Olofsson, M., Ek-Olausson, B., Ljungstro¨m, E., Langer, S., 2003. Flux of organic compounds from grass measured by relaxed eddy accumulation technique. J. Environ. Monit. 5, 963-970. Olofsson, M., Ek-Olausson, B., Jensen, N.O., Langer, S., Ljungstro¨m, E., 2005. The flux of isoprene from a willow plantation and the effect on local air quality. Atmos. Environ. 39, 2061-2070. Oncley, S. P., Delany, A. C., Horst, T. W. and Tans, P. p., 1993. Verification of flux measurement using relaxed eddy accumulation. Atmospheric Environment, 27A, 2417-2426. Rinne, J., 2001. Application and development of surface layer flux Techniques for measurements of volatile organic compound emissions from vegetation. Finnish Meteorological Institute, Helsinki. Schutz, H. W. Seiler and R. Conrad, 1989. Processes involved in formation and emission of methane in rice paddies. Biogeochemistry, 7 pp. 33-35. Singh, S., S. Kumar, and M. C. Jain, 1997. Methane emission from two Indian soils planted with different rice cultivators. Biol.fertil. Soils 25:285-289. Singh, S., J. S. Singh, and A. K. Kashyap, 1998. Contrasting pattern of methane flux in rice agriculture. Naturwissenschaften 85: 494-497. Skov, H., Brooks, S.B., Goodsite, M.E., Lindberg, S.E., Meyers, T.P., Landis, M.S., Larsen, M.R.B., Jensen, B., McConville, G., Christensen, J., 2006. Fluxes of reactive gaseous mercury measured with a newly developed method using relaxed eddy accumulation. Atmos. Environ. 40, 5452-5463. S.N. Satpathy, S. Mishra, T.K. Adhya1, B. Ramakrishnan, V.R. Rao and N. Sethunathan, 1998. Cultivar variation in methane efflux from tropical rice, Plant and Soil 202, 223-229. Sutton, O.G.,1953. Micrometeorology. McGraw-Hill, New York,333pp. Swinbank, W.C., 1951. The measurement of vertical transfer of heat and water vapor by eddies in the lower atmosphere. Journal of the Atmospheric Sciences, vol. 8, pp. 135-145. Tiia Gronholm et al., 2008. The dependence of the b coefficient of REA system with dynamic deadband on atmospheric conditions. Environmental Pollution 152: 597-603. Tsai J. L. and Tsuang B. J., 2005 Aerodynamic roughness over an urban area and over two farm lands in a populated area as determined by wind profiles and surface energy flux measurements Agricultural and Forest Meteorology 132:154–170. Tseng K. H.,Tsai J. L.,Arumugam Alagesan,Tsuang B. J.,Yao M. H.,Kuo P. H., 2010. Determination of methane and carbon dioxide fluxes during the rice maturity period in Taiwan by combining profile and eddy covariance measurements. Agricultural and Forest Meteorology 150:852-859. Wand, Z. P., R. D. Delaune, P. H. Masscheleyn and W. H. Patrick, Jr., 1993. Soil redox and pH effects on methane production in a flooded rice soil. Soil Sci. Soc. Am. J.,57:382-385. Wranger-Riddle, C., Thurtell, G.W., Kidd, G.E., Edwards, G.C., Simpson, I.J., 1996. Micrometeorological measurements of trace gas fluxes from agricultural and natural ecosystems. Infrared. Phys. Techn. 37, 51–58. Yang, S.S., Chang, H.L., 1999. Diurnal variation of methane emission from paddy fields at different growth stages of rice cultivation in Taiwan. Agric. Ecosyst. Environ. 76, 75–84. 賴朝明、楊盛行, 1998,氧化亞氮對農作物生產之影響及因應對策。在氣候變遷對農作物生產之影響,第九章。pp. 141-149,台灣省農業試驗所,台中縣。 蔡徵霖,2001,以垂直剖面氣象場及輻射資料計算地表粗糙度之研究」,碩士論文,國立中興大學環境工程研究所,台中 李健捀,2001有機質肥料對土壤及水稻生育之影響,博士論文,國立中興大學農藝學系。 王明鍵,2003, 以微氣象法量測大氣微量氣體通量之建立與驗證,碩士論文,國立雲林科技大學環境與安全工程研究所。 朱佳仁,2003, 環境流體力學,國立中央大學土木工程學系,新竹。 姚銘輝、陳守泓,2005,水稻田二氧化碳吸存量之研究,台灣農業研究,54:150~161 余思穎,2006,利用渦流協變性系統量測都會區紊流熱通量之研究,碩士論文,國立中興大學環境工程研究所。 張家嘉,2006,水稻田溫室氣體排放動態模式之發展及情景評估,碩士論文,國立雲林科技大學研究所。 吳兆偉,2007,水稻田生長季及休耕期通量資料分析與比較,碩士論文,國立中興大學環境工程研究所。 陳思為,2009,利用隨意渦流累積法連續觀測一氧化碳及二氧化碳通量之研究,碩士論文,國立中興大學環境工程研究所。 曾世廷,2010,水稻田碳通量觀測:隨意渦流累積法、flux-variance之可行性研究,碩士論文,國立中興大學環境工程研究所。 行政院農業委員會網站 (http://www.coa.gov.tw/show_index.php
摘要: 本研究以隨意渦流累積系統在水稻田觀測溫室氣體二氧化碳及甲烷的通量,觀測時間為2011/4/27 ~ 2011/5/9(水稻孕穗期),並搭配協變渦流系統的觀測資料進行分析比對。隨意渦流累積系統由過去的系統進行改良,改良的重點有:體積縮減增加機動性、增加採樣端除水裝置使採樣更精確及使用無線發送天線以減少線路等。 以二氧化碳通量、蒸發潛熱通量及可感熱通量反推β值,β值分別為0.38、0.38及0.39,以可感熱通量反推的β值回歸線性最好,其95%信賴區間為0.17 ~ 0.55,本次研究使用的β值為0.38。隨意渦流累積系統與渦流協變系統所觀測的值進行相關性分析,得到R2 = 0.5325,顯示兩個系統具一定的可信度。平均一天排放渦流協變系統約為11.8 g /(m2day),而隨意渦流累積系統約為12.6 g/( m2day)。甲烷生成菌在一定的溫度範圍內,活動力與溫度成一正相關的關係,故本研究中量測的甲烷通量有日高夜低的趨勢,其通量範圍約在0.04 ~ 0.38 μg/(m2 s)。每天排放的甲烷量約為12.92 mg /(m2day),而這次時期(11日)觀測的總排放量為138.6 mg/m2。
In this study, a field measurement of CH4 and CO2 fluxes was conducted by using the Relaxed Eddy Accumulation (REA) method and the eddy covariance (EC) technique over rice paddies at Wu-Fong Agricultural Research Institute during 2011/4/27 ~ 2011/5/9. The new REA system was modified from the previous system to improve the accuracy, which included the minimum of the system, sample dryer and the reduction of sampling tube length. Theβ values in the REA method calculated from the fluxes of CO2, water vapor and sensible haet from the EC system were 0.38, 0.38 and 0.39, respectively. The statistical results showed that β from sensible heat flux was better than others. Therefore, β value was assigned as 0.38 in this study. The R2 of EC and REA systems was 0.5352 and therefore, it was considered reasonable and credible for the REA system. The CO2 average emissions were 11.8 g /m2/day and 2.6 g/m2/day by EC and REA, respectively. The CH4 flux measured by REA was 12.92 mg /m2/day and the total emission was 138.6 mg/m2 during study period. The methane fluxes were higher during daytime compared with those in the nighttime, which ranged for 0.04 to 0.38 μg /m2/s.
URI: http://hdl.handle.net/11455/5070
其他識別: U0005-2607201115024800
文章連結: http://www.airitilibrary.com/Publication/alDetailedMesh1?DocID=U0005-2607201115024800


在 DSpace 系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。