Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/5081
標題: 界面活性劑增效電動力技術復育受五氯酚污染土壤之探討
Surfactant-enhanced Electrokinetic Remediation of Pentachlorophenol from Soil
作者: 鄧禮浩
Deng, Li-Hao
關鍵字: 五氯酚
Pentachlorophenol (PCP)
十二烷基苯磺酸鈉
電動力復育
微胞
Sodium dodecylbenzene sulfonate (SDBS)
Electrokinetic remediation
Micelle
出版社: 環境工程學系所
引用: 英文部份 Acar, Y. B. and Alshawabkeh, A. N. (1993) Principals of electrokinetic remediation. Environmental Science and Technology, Vol. 27, pp. 2638-2647. Acar, Y. B. and Alshawabkeh, A. N. (1994) Removal of Cadmium (II) form Saturated Kaolinite by the Application of Electrical Current. Geotechnique, Vol. 44, pp. 239-254. Amrate, S., Akretche, D.E., Innocent, C. and Seta, P. (2006) Use of cation- exchange membranes for simultaneous recovery of lead and EDTA during electrokinetic extraction. Desalination, Vol 193, pp. 405-410. Baraud, F., Tellier, S. and Astruc, M. (1999) Temperature effect on ionic transport during soil electrokinetic treatment at constant pH. Journal of Hazardous Materials, Vol. 64, pp. 263-281. Bruce, J. B., Chen, H., Wanjia Z. and John C. W. (1997) Sorption of Nonionic Surfactants on Sediment Materials. Environmental Science and Technology, Vol 31, pp. 1735-1741. Chang, J.H., Qiang, Z., Huang, C.P. and Cha, D. (2000) Electroosmotic Flow Rate:A Semiempirical Approach. Chapter 15 in Nuclear Site Remediation: First Accomplishments of the Environmental Management Science Program,ACS Symposium Series, Vol. 778, pp. 247-266. Chiou, C.T. and Kile, D.E.(1989) Water Solubility Enhancement of DDT and Trichlorobenzene by some surfactant Below and Above the Critical Micell Concentration. Environmental Science and Technology,Vol. 23, pp. 832-838. Coletta, T.F., Bruell, C.J., Ryan, D.K. and Inyang, H.I. (1997) Cation-Enhanced Removal of Lead from Kaolinite by Electrokinetics. Journal of Environmental Engineering, Vol. 123, pp. 1227-1233. Darmawan, S. and Wada, S.I. (2002) Effect of clay mineralogy on the feasibility of electrokinetic soil decontamination technology. Applied clay science, Vol. 20, pp. 283-293. Gannon, O.K., Bibring, P., Raney, K., Ward, J.A., Wilson, D.J., Underwood, J.L. and Debelak, K.A. (1989) Soil clean up by in situ surfactant flushing. Environmental Science and Technology, Vol. 24, pp. 1073-1094. Giannis, A., Nikolaou, A., Pentari, D. and Gidarakos, E. (2009) Chelating agent- assisted electrokinetic removal of cadmium,lead and copper from contaminated soils. Environmental Pollution, Vol. 157, pp. 3379-3386. Goerlitz, D.F., Troutman, D.E., Godsy, E.M. and Franks, B.J. (1985) Migration of wood-preserving chemicals in contaminated groundwater in a sand aquifer at Pensacola. Environmental Science, Vol. 19, pp. 955-961. Hamed, J.T. and Bhadra, A. (1997) Influence of Current Density and pH on Electrokinetics. Journal of Hazardous Materials, Vol. 55, pp. 279-294. Ho, V.S. (1999) The Lasagna technology for in-situ soil remediation:1. Small field test. Environmental Science and Technology, Vol. 33, pp. 1086-1091. Hurst, C.J., Sorensen, D.L., Sims, R.C., Mclean, J.E., Sims, J.L. and Huling, S. (1997) Soil Gas Oxygen Tension and Pentachlorophenol Biodegradation. Journal of Environmental Engineering, Vol. 123, pp. 364-370. Karagunduz, A., Gezer, A. and Karasuloglu, G. (2007) Surfactant enhanced electrokinetic remediation of DDT from soils. Science of The Total Environment, Vol. 385, pp. 1-11. Kim, S.O., Moon, S.H., Kim, K.W. and Yum, S.T. (2002) Pilot scale on the exsite electrokinetic removal of heavy metal from municipal wastewater sludge. Water Research, Vol. 36, pp. 4765-4774. Kim, D.H., Ryu, B.G., Park, S.W., Seo, C. and Baek, K. (2009) Electrokinetic remediation of Zn and Ni-contaminated soil. Journal of Hazardous Materials, Vol. 165, pp. 501-505. Krauss, H., Zorn, R., Haus, R. and Czurda, K. (2001) Electroosmotic Transport in Fine Grained Sediments With Respect to Pore Throats. 3rd Symposium and Status Reports on Electrokinetic Remediation. Larry, C.M. and Chen, J.L. (1997) Effects of conductive fractures during in-situ electroosmosis. Journal of Hazardous Materials, Vol. 55, pp. 239-262. Leinz, R.W., Hoover, D.B. and Meier, A.L. (1998) An Electrochemical Methode for Environmental Application. Journal of Geochemical, Vol. 64, pp. 421-434. Manilal, V.B. and Alexander, M. (1991) Factors affecting microbial degradation of phenanthrene in soil. Microbiol Biotechnol, Vol. 35, pp. 401-405. Nelson, D.W. and Sommers, L.E. (1982) Total carbon, organic carbon and organic matter. In Methods of soil analysis: Part 2. Chemical and Microbiological Properties, pp. 539-537. Oonnittan, A., Shrestha, R. A. and Sillanpää, M. (2009) Effect of cyclodextrin on the remediation of hexachlorobenzene in soil by electrokinetic Fenton process. Separation and Purification Technology, Vol 64, pp. 314-320. Park, J.Y., Lee, H.H., Kim, S.J., Lee, Y.J. and Yang, J.W. (2007) Surfactant- enhanced electrokinetic removal of phenanthrene from kaolinite. Journal of Hazardous Materials, Vol. 140, pp. 230-236. Pazos, M., Sanromán, M.A. and Cameselle, C. (2006) Improvement in electrokinetic remediation of heavy metal spiked kaolin with the polarity exchange technique. Chemosphere, Vol. 62, pp. 817-822. Peng, G., Tian, G., Liu, J., Bao, Q. and Zang, L. (2010) Removal of heavy metals from sewage sludge with a combination of bioleaching and electrokinetic remediation technology. Desalination, Vol. 271, pp. 100-104. Polcaro, A.M., Vacca, A., Mascia, M. and Palmas, S. (2007) Electrokinetic removal of 2,6-dichlorophenol and diuron from kaolinite and humic acid-clay system. Journal of Hazardous Materials, Vol. 148, pp. 505-512. Puppala, K.S., Alshawabkeh, A.N., Acar, Y.B., Gale, R.J. and Bricka, M. (1997) Enhanced Electrokinetic Remediation of High Sorption Capacity Soil. Journal of Hazardous Meterials, Vol. 55, pp. 221-237. Rosen, M.J. (1988) Surfactants and Interfacial Phenomena. John Wiley & Sons Inc. New York. Sah, J., Tsai, T.T. and Kao, C.M. (2010) Application of iron electrode corrosion enhanced electrokinetic-Fenton oxidation to remediate diesel contaminated soils: A laboratory feasibility study. Journal of Hydrology, Vol 380, pp. 4-13. Suntio, L.R., Shiu, W.Y. and Mackay, D. (1988) A review of the nature and Properties of chemicals present in pulp mill effluents. Chemosphere, Vol. 17,pp. 1249-1290. Traina, G., Morselli, L. and Adorno, G.P. (2007) Electrokinetic remediation of bottom ash from municipal solid waste incinerator. Electrochimica Acta, Vol. 52, pp. 3380-3385. Valo, R., Apajalahti, J. and Salkinoja-Salonen, M. (1985) Studies on the physiology of microbial degradation of pentachlorophenol. Applied and Environmental Microbiology,Vol. 54, pp. 2452-2459. Vane, M.L. and Zang, G.M. (1997) Effect of aqueous phase properties on clay partical zeta potential and Electro-osmotic permeability:implications for electro-kinetic soil remediation processes. Journal of Hazardous Materials, Vol. 55, pp. 1-22. Virkutyte, J., Sillanpaa, M. and Latostenmaa, P. (2002) Electrokinetic soil rediation-critical overview. The Science of the Total Environment, Vol. 289, pp. 97-121. Wu, Z., Cong, Y. and Ye, Q. (2005) Electrokinetic Behaviour of Chlorinated Phenols in Soil and Their Electrochemical Degradation. Process Safety and Environmental Protection, Vol. 83, pp. 178-183. Xu, Q. and Snell, E.D. (1991) Adsorption Behavior of Alkylarylethoxylated Alcohols on Silica. Journal of Colloid and Interface Science, Vol.144, pp. 165-173. Yuan, C. and Chiang, T.S. (2008) Enhancement of electrokinetic remediation of arsenic spiked soil by chemical reagents. Journal of Hazardous Materials , Vol. 152, pp. 309-315 中文部份 1.行政院環境保護署,國內場址列管情形 http://sgw.epa.gov.tw/public/0401.asp 2.行政院環境保護署,環檢所 http://www.niea.gov.tw/ 3.行政院環境保護署,毒理資料庫查詢 http://edb.epa.gov.tw/index_toxic.htm 1.黃秋嫆 (1993)。固定化氯酚分解菌處理廢水中含氯酚類更毒物質之研究。國立中興大學環境工程系碩士論文。 2.葉玉雯(1999)。比較索氏萃取法與超臨界萃取法對含萘及五氯酚土壤萃取之研究。國立中興大學環境工程系碩士論文。 3.林畢修平、張裕釧、蔡慧穎(2000)。環境中含氯有機污染源生物復育之可行性介紹。微生物與環境荷爾蒙研討會論文集,第66-84頁。 4.莊恭旭(2000)。利用界面活性劑與PAHs分解菌處理廢水中PAHs之研究。國立中山大學海洋環境及工程學系碩士論文。 5.陳百合(1997)。不同土壤組成對界面活性劑吸附機制之研究。國立中央大學環境工程系碩士論文。 6.鄭孟嘉(2001)。以電化學方法處理受鎘、鉛汙染土壤之研究。國立台灣大學化學工程系碩士論文。 7.翁誌煌(1998)。受有機物污染廠址之物化整治技術研究:電滲透法整治有機污染廠址之研究(第二年)。行政院國科會專題研究計畫成果報告。 8.林世平 (2003)。改良電壓操作方式對電動力處理受污染底泥之影響。國立中 興大學環境工程學系碩士論文。 9.斯克誠和駱尚廉(2000)。土壤與地下水污染整治政策與其實務。土壤水利,第26卷,第4期,第50-58頁。 10.林裕雄(2000)。以電動力法處理受三氯乙烯及單氯酚污染黏質土壤之研究。國立中興大學環境工程系碩士論文。 11.劉奇岳(1999)。電動力-Fenton法現地處理受三氯乙烯及4-氯酚污染土樣之最佳操作條件探討。國立中山大學環境工程學系碩士論文。 12.黃惠淳(2000)。β-環糊精對十二烷基硫酸鈉臨界微胞濃度之影響:毛細管電泳法之研究。國立台灣大學化學工程系碩士論文。 13.張寶淑(1992)。氯酚類化合物在蒙特石表面吸附反應之特性研究。國立台灣工業技術學院化學工程研究所碩士論文。 14.徐明宏(2004)。界面活性劑對土壤/水系統中有機污染物傳輸特性之影響及其土壤污染整治應用評估。國立中央大學環境工程學系碩士論文。 15.王志哲(2000)。陰離子及複合(陰離子/中性)界面活性劑系統對BTEX污染土壤復育效率之研究。國立中央大學環境工程學系碩士論文。 16.邱瑞斌(2002)。受五氯酚污染土壤復育技術之研究。屏東科技大學環工程與科學系碩士論文。 17.黃瑞淵(2008)。改良式電動力法處理五氯酚污染土壤之研究。中華民國環境工程學會2008土壤與地下水研討會。
摘要: 五氯酚為疏水性有機污染物,早期主要使用於木材防腐及農業用殺蟲劑,造成污染來源主要來自工廠製造、搬運過程中外洩流入土壤中,這些含氯有機污染物容易被土壤有機質所吸附而形成長期性污染。 本研究以陰離子界面活性劑為操作液,所選用的界面活性劑是十二烷基苯磺酸鈉 (SDBS),利用SDBS可以增加疏水性有機污染物溶解度的特性,提昇電動力復育五氯酚污染之高嶺土。處理過程中,探討操作液置放陽極槽或陰極槽對移除土壤中五氯酚之影響,並觀察系統電流變化、操作液pH值、電滲透流及污染物濃度。 實驗結果顯示,SDBS在不同pH下都可使五氯酚增加溶解度,且對於含五氯酚之土壤,SDBS濃度在大於1000 mg/L開始逐漸提高脫附效率,有效去除土壤中五氯酚。在電動力系統中,以SDBS作為陽極槽操作液時,由於電流量不高而無法以電滲透流將土壤中五氯酚帶至陰極槽移除;而以SDBS作為陰極槽操作液時,大量的SDBS會往陽極移動,使遷移至靠近陽極端土壤累積的五氯酚會與SDBS形成微胞,再溶於水中移動至陽極槽而去除,在電壓為3 V/cm、操作時間為10天時,操作液SDBS (6000 mg/L SDBS/0.005 M NaCl)置放陰極槽,其五氯酚移除率有23.37%。
Pentachlorophenol (PCP) is a highly chlorinated organic compound that has been extensively used as a pesticide, particularly in the wood preservation industry. Due to its stable aromatic ring structure and high chlorine content, PCP is persistent in the environment, and it has become one of the most widespread contaminants in soil and water. The objective of this study was to investigate the removal of PCP from the kaolinite using electrokinetic method in the presence of surfactants. An anionic surfactant, Sodium dodecylbenzene sulfonate (SDBS) was used to enhance the solubility of PCP. It was found that the removal of PCP was limited in the electrokinetic remediation when SDBS was used as the anodic electrolyte solution. This was attributed to that PCP transport toward the anode overcame the opposite electrosmotic flows. On the other hand, using SDBS as the cathodic electrolyte solution removed 23.37% of PCP from kaolinite. This was attributed to PCP transport toward the anode within the negatively charged micelles.
URI: http://hdl.handle.net/11455/5081
其他識別: U0005-2706201115491500
文章連結: http://www.airitilibrary.com/Publication/alDetailedMesh1?DocID=U0005-2706201115491500
Appears in Collections:環境工程學系所

文件中的檔案:

取得全文請前往華藝線上圖書館



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.