Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/5083
標題: 以果蠅繁殖力及視網膜功能作為生活污泥再利用之生物毒性評估
Biotoxicity assessment for sewage sludge reuse by using the fertility and retina function of Drosophila
作者: 陳梅瑩
Chen, Mei-Ying
關鍵字: fertility
生殖
retina function
biological toxicity
sludge
視網膜功能
生物毒性
生活污泥
出版社: 環境工程學系所
引用: 1. 中文部分 (1) 圖書 孔志明編,環境毒理學,第2版,2004。中國:南京大學出版社。 林健民編著,環境毒物學,第二版修訂版,2008,120-136。台北:新文京開發。 陳雅茜譯,Martin Brookes著,果蠅:閃亮的生命科學研究先趨(Fly:An Experimental Life),第一版,2003,13-25。台北市:天下遠見。 葉篤莊、周建人、方宗熙譯,達爾文著,物種起源(The origin of species),二版,民1998。台北市:臺灣商務。 竹內九米司、稻津教久著,鄭維欣譯,無孔不入經皮毒,初版,2009,10-26,28-44。台北市:時報文化。 (2) 期刊論文 台北市政府工務局衛生下水道工程處,台北地區污水處理消化後污泥處理工程-第一期實施計畫,2002。 台北市政府工務局衛生下水道工程處,污泥最終處置最佳方案評估計畫 -污泥堆肥化研究,期末報告,2004。 內政部營建署,公共下水道污水處理廠污泥再利用於土壤改良材之研究,2004。 呂憶筠,懷孕暴露PCB153對第一及第二雄性子代生長發育及生殖毒性之研究,國立高雄第一科技大學環境與安全衛生工程所碩士論文,2009。 林伯雄、郭育良、吳勝雄、康玉薇、鄭朝璋、潘文驥、王淑惠,化學物質干擾活體生物荷爾蒙平衡之研究,行政院環境保護署環境檢驗所專案研究計畫編號EPA-90-E3S5-02-01,2001。 潘時正、曾迪華,下水污泥灰渣特性及再利用於水泥材料之評估,國立中央大學環境工程學刊,第五期,1999。 (3) 網路資源 內政部營建署,公共下水道污水處理廠污泥再利用於土壤改良材之研究計劃,2004。 http://www.cpami.gov.tw/chinese/index.php?option=com_content&view=article&id=7495&Itemid=104 中華民國環保法規資料中心網站,2007。http://law.epa.gov.tw/zh-tw/laws/480770486.htmlhttp://www.bsmi.gov.tw 台灣內科醫學會,巴金森氏病與環境危險因子間的關聯性. 林瑞榮等。1998.The epidemiology of Parkinson''s disease in an Australian population. Neuroepidemiology 1998; 17: 310-7. http://www.tsim.org.tw/journal/jour15-6/P15 249.PDF。 台灣環境資訊協會-環境資訊中心,2008。 http://e-info.org.tw/taxonomy/term/7184 行政院環境保護署,土壤污染管制標準,2011。 http://www.ivy5.epa.gov.tw/epalaw/prelaw/pre00470b.doc 行政院環境保護署,認識環境荷爾蒙,2010。 http://flora2.epa.gov.tw/toxicweb/comic/index1.html 財團法人中興工程顧問社環境工程研究中心,有機污泥資源化技術之發展與應用,朱敬平,2005。 http://www.adktroutguide.com/files/Chinese_Paper_-_Sludge_Conversion.pdf 張添晉,廢棄物資源化專輯,有機污泥之生物減量技術。 http://www.ema.org.tw/monthlymgz/pdf/38/66-77.pdf 張添晉,第十三屆土壤及地下水污染整治研討會,2009。 http://www.140.112.63.130/980626/sppt/.pdf 廢水污泥減容減量技術研析。 ebooks.lib.ntu.edu.tw/1_file/moeaidb。 2. 西文部分 (1) Books Epstein, E., (2002), Land application of sewage sludge and biosolids, Lewis Publishers, Florida, pp.201. (2) Journal Articles Ahn KC, Zhao B, Chen J, Cherednichenko G, Sanmarti E, Denison MS, et al. In vitro biologic activities of the antimicrobials triclocarban, its analogs, and triclosan in bioassay screens: receptor-based bioassay screens. Environ Health Perspect 2008;116:1203–10. Allen, V.G. (1984). Influence of dietary aluminum on nutrient utilization in ruminants. J Anim Sci 59, 836-844. Alonso-Magdalena, P., Quesada, I., and Nadal, A. (2011). Endocrine disruptors in the etiology of type 2 diabetes mellitus. Nat Rev Endocrinol 7, 346-353. Andersen H, Siegrist H, Halling-Sorensen B, Ternes TA. Fate of estrogens in a municipal sewage treatment plant. Environ Sci Technol 2003;37:4021–6. Arfsten, D.P., Still, K.R., and Ritchie, G.D. (2001). A review of the effects of uranium and depleted uranium exposure on reproduction and fetal development. Toxicol Ind Health 17, 180-191. Balabanic, D., Rupnik, M., and Klemencic, A.K. (2011). Negative impact of endocrine-disrupting compounds on human reproductive health. Reprod Fertil Dev 23, 403-416. Bell, A.J., McBride, S.M., and Dockendorff, T.C. (2009). Flies as the ointment: Drosophila modeling to enhance drug discovery. Fly (Austin) 3, 39-49. Bogh, I.B., Christensen, P., Dantzer, V., Groot, M., Thofner, I.C., Rasmussen, R.K., Schmidt, M., and Greve, T. (2001). Endocrine disrupting compounds: effect of octylphenol on reproduction over three generations. Theriogenology 55, 131-150. Bornehag C. G. and Nanberg E. (2010). Phthalate exposure and asthma in children. International Journal of Andrology. 33(2):333-45. Clayton, E.M., Todd, M., Dowd, J.B., and Aiello, A.E. (2011). The impact of bisphenol A and triclosan on immune parameters in the U.S. population, NHANES 2003-2006. Environ Health Perspect 119, 390-396. De Lourdes Marzo Solano, M., de Lima, P.L., Luvizutto, J.F., Silva, P.R., de Aragao Umbuzeiro, G., and de Camargo, J.L. (2009). In vivo genotoxicity evaluation of a treated urban sewage sludge sample. Mutat Res 676, 69-73. de Wever H, Verachtert TH. Biodegradation and toxicity of benzothiazoles. Water Res 1997;31:2673–84. Desoize, B. (2003). Metals and metal compounds in carcinogenesis. In Vivo 17, 529-539. Eriksen GS, Amundsen CE, Bernhoft A, Eggen T, Grave K, Halling-Sørensen B, et al. Risk assessment of contaminants in sewage sludge applied on Norwegian soils. Norway:Panel on Contaminants in the Norwegian. Scientific Committee for Food Safety; 2009. Giacomotto, J., and Segalat, L. (2010). High-throughput screening and small animal models, where are we? Br J Pharmacol 160, 204-216. Giudice, B.D., and Young, T.M. (2010). The antimicrobial triclocarban stimulates embryo production in the freshwater mudsnail Potamopyrgus antipodarum. Environ Toxicol Chem 29, 966-970. Gustavsson, L., Hollert, H., Jonsson, S., van Bavel, B., and Engwall, M. (2007). Reed beds receiving industrial sludge containing nitroaromatic compounds. Effects of outgoing water and bed material extracts in the umu-c genotoxicity assay, DR-CALUX assay and on early life stage development in zebrafish (Danio rerio). Environ Sci Pollut Res Int 14, 202-211. Hardie, R.C., and Raghu, P. (2001). Visual transduction in Drosophila. Nature 413, 186-193. Harris, C.A., Hamilton, P.B., Runnalls, T.J., Vinciotti, V., Henshaw, A., Hodgson, D., Coe, T.S., Jobling, S., Tyler, C.R., and Sumpter, J.P. (2011). The consequences of feminization in breeding groups of wild fish. Environ Health Perspect 119, 306-311. Horowitz, M.P., and Greenamyre, J.T. (2010). Gene-environment interactions in Parkinson''s disease: the importance of animal modeling. Clin Pharmacol Ther 88, 467-474. Krans, J., Gilbert, C., and Hoy, R. (2006). Teaching insect retinal physiology with newly designed, inexpensive micromanipulators. Adv Physiol Educ 30, 254-261. Kristensen, D.M., Skalkam, M.L., Audouze, K., Lesne, L., Desdoits-Lethimonier, C., Frederiksen, H., Brunak, S., Skakkebaek, N.E., Jegou, B., Hansen, J.B., et al. (2011). Many putative endocrine disruptors inhibit prostaglandin synthesis. Environ Health Perspect 119, 534-541. Legler, J., Hamers, T., van Eck van der Sluijs-van de Bor, M., Schoeters, G., van der Ven, L., Eggesbo, M., Koppe, J., Feinberg, M., and Trnovec, T. (2011). The OBELIX project: early life exposure to endocrine disruptors and obesity. Am J Clin Nutr. Legler J, Brouwer A. Are brominated flame retardants endocrine disruptors? Environ Int 2003;29:879–85. Li, W.L., Ji, Y.B., Yang, Y.N., and Yang, B. (2004). Reproductive toxicity and functional mechanism of the environmental hormone butylbenzyl phthalate. Huan Jing Ke Xue 25, 1-6. Liang, R., Senturker, S., Shi, X., Bal, W., Dizdaroglu, M., and Kasprzak, K.S. (1999). Effects of Ni(II) and Cu(II) on DNA interaction with the N-terminal sequence of human protamine P2: enhancement of binding and mediation of oxidative DNA strand scission and base damage. Carcinogenesis 20, 893-898. Lienesch, L.A., Dumont, J.N., and Bantle, J.A. (2000). The effect of cadmium on oogenesis in Xenopus laevis. Chemosphere 41, 1651-1658. Lin, C.H., Wu, R.M., Tai, C.H., Chen, M.L., and Hu, F.C. (2011). Lrrk2 S1647T and BDNF V66M interact with environmental factors to increase risk of Parkinson''s disease. Parkinsonism Relat Disord 17, 84-88. Liu, T., Dartevelle, L., Yuan, C., Wei, H., Wang, Y., Ferveur, J.F., and Guo, A. (2009). Reduction of dopamine level enhances the attractiveness of male Drosophila to other males. PLoS One 4, e4574. Liu, Y., Tam, N.F., Guan, Y., Yasojima, M., Zhou, J., and Gao, B. (2011). Acute toxicity of nonylphenols and bisphenol A to the embryonic development of the abalone Haliotis diversicolor supertexta. Ecotoxicology. Mahoney, M.M., and Padmanabhan, V. (2010). Developmental programming: impact of fetal exposure to endocrine-disrupting chemicals on gonadotropin-releasing hormone and estrogen receptor mRNA in sheep hypothalamus. Toxicol Appl Pharmacol 247, 98-104. Mantis, I., Voutsa, D., and Samara, C. (2005). Assessment of the environmental hazard from municipal and industrial wastewater treatment sludge by employing chemical and biological methods. Ecotoxicol Environ Saf 62, 397-407. Matthew, P., (1999). Sewage sludge treatment and biosolids management in Europe. Conf., On sewage sludge treatment and disposal in Madrid. Mendiola, J., Moreno, J.M., Roca, M., Vergara-Juarez, N., Martinez-Garcia, M.J., Garcia-Sanchez, A., Elvira-Rendueles, B., Moreno-Grau, S., Lopez-Espin, J.J., and Ten, J., et al. (2011). Relationships between heavy metal concentrations in three different body fluids and male reproductive parameters: a pilot study. Environ Health 10, 6. Meng, X.H., Liu, P., Wang, H., Zhao, X.F., Xu, Z.M., Chen, G.H., and Xu, D.X. (2011). Gender-specific impairments on cognitive and behavioral development in mice exposed to fenvalerate during puberty. Toxicol Lett 203, 245-251. Miyagawa, S., Sato, M., and Iguchi, T. (2011). Molecular mechanisms of induction of persistent changes by estrogenic chemicals on female reproductive tracts and external genitalia. J Steroid Biochem Mol Biol. Montell, C. (1999). Visual transduction in Drosophila. Annu Rev Cell Dev Biol 15, 231-268. Nadzialek, S., Depiereux, S., Mandiki, S.N., and Kestemont, P. (2011). In vivo biomarkers of estrogenicity: limitation of interpretation in wild environment. Arch Environ Contam Toxicol 60, 471-478. Neogy, M., Datta, J., Roy, A.K., and Mukherji, S. (2002). Studies on phytotoxic effect of aluminium on growth and some morphological parameters of Vigna radiata L. Wilczek. J Environ Biol 23, 411-416. Newbold RR, Jefferson WN, Padilla-Banks E. Prenatal exposure to bisphenol A at environmentally relevant soses adversely affects the murine female reproductive tract later in life. Environ Health Perspect 2009;117:879–85. Oehlmann J, Oetken M, Schulte-Oehlmann U. A critical evaluation of the environmental risk assessment for plasticizers in the freshwater environment in Europe, with special emphasis on bisphenol A and endocrine disruption. Environ Res 2008;108:140–9. Ottinger, M.A., Lavoie, E.T., Abdelnabi, M., Quinn, M.J., Jr., Marcell, A., and Dean, K. (2009). An overview of dioxin-like compounds, PCB, and pesticide exposures associated with sexual differentiation of neuroendocrine systems, fluctuating asymmetry, and behavioral effects in birds. J Environ Sci Health C Environ Carcinog Ecotoxicol Rev 27, 286-300. Page, A.L., and A.C. Chang, (1994). Overview of the past 25 years:Technical perspective, pp.3-6. In C. E. Clapp et al.(eds.)Sewage sludge:Land utilization and the environment, ASA, CSSA, and SSSA, Madision, WI, USA. Porter, P.C., Ongeri, V., Luong, A., Kheradmand, F., and Corry, D.B. (2011). Seeking common pathophysiology in asthma, atopy and sinusitis. Trends Immunol. Rajaram, S., Scott, R.L., and Nash, H.A. (2005). Retrograde signaling from the brain to the retina modulates the termination of the light response in Drosophila. Proc Natl Acad Sci U S A 102, 17840-17845. Rand, M.D. (2010). Drosophotoxicology: the growing potential for Drosophila in neurotoxicology. Neurotoxicol Teratol 32, 74-83. Roghair CJ, Buijze A, Schoon HNP. Ecotoxicological risk evaluation of the cationic fabric softener DTDMAC. I. Ecotoxicological effects. Chemosphere 1992;24:599–609. Scott, K., and Zuker, C. (1997). Lights out: deactivation of the phototransduction cascade. Trends Biochem Sci 22, 350-354. Segalat, L. (2007). Invertebrate animal models of diseases as screening tools in drug discovery. ACS Chem Biol 2, 231-236. Shoji, R., Mohri, S., Sakai, Y., and Yamada, M. (2008). Ecotoxicity assessment of sludge and leaching test eluates of sludge. J Environ Sci Health A Tox Hazard Subst Environ Eng 43, 1042-1047. Siddique, H.R., Gupta, S.C., Dhawan, A., Murthy, R.C., Saxena, D.K., and Chowdhuri, D.K. (2005). Genotoxicity of industrial solid waste leachates in Drosophila melanogaster. Environ Mol Mutagen 46, 189-197. Soares A, Guieysse B, Jefferson B, Cartmell E, Lester JN. Nonylphenol in the environment: a critical review on occurrence, fate, toxicity and treatment in wastewaters. Environment International 34 (2008) 1033–1049. Srivastava, R., Tewari, A., Chauhan, L.K., Kumar, D., and Gupta, S.K. (2005). Ecotoxicological evaluation of municipal sludge. Altern Lab Anim 33, 21-27. Stouder, C., and Paoloni-Giacobino, A. (2011). Specific transgenerational imprinting effects of the endocrine disruptor methoxychlor on male gametes. Reproduction 141, 207-216. Sullivan, A.W., Hamilton, P., and Patisaul, H.B. (2011). Neonatal agonism of ERbeta impairs male reproductive behavior and attractiveness. Horm Behav. Takeda, M., Martinez, R., Kudo, T., Tanaka, T., Okochi, M., Tagami, S., Morihara, T., Hashimoto, R., and Cacabelos, R. (2010). Apolipoprotein E and central nervous system disorders: reviews of clinical findings. Psychiatry Clin Neurosci 64, 592-607. Tariq, M., Morais, C., Sujata, B., Sobki, S., al Sulaiman, M., and al Khader, A. (1999). Aluminum exacerbates cyclosporin induced nephrotoxicity in rats. Ren Fail 21, 35-48. Tewari, A., Chauhan, L.K., Kumar, D., and Gupta, S.K. (2005). Municipal sludge leachate-induced genotoxicity in mice--a subacute study. Mutat Res 587, 9-15. Versteeg DJ, Feijtel TCJ, Cowan CE, Ward TE, Rapaport RA. An environmental risk assessment for DTDMAC in The Netherlands. Chemosphere 1992;24:641–62. vom Saal, F.S., Akingbemi, B.T., Belcher, S.M., Birnbaum, L.S., Crain, D.A., Eriksen, M., Farabollini, F., Guillette, L.J., Jr., Hauser, R., Heindel, J.J., et al. (2007). Chapel Hill bisphenol A expert panel consensus statement: integration of mechanisms, effects in animals and potential to impact human health at current levels of exposure. Reprod Toxicol 24, 131-138. Voulvoulis N, Scrimshaw MD, Lester JN. Removal of organotins during sewage treatment: a case study. Environ Technol 2004;25:733–40. Wang, H., Wang, J., Wu, T., Qin, F., Hu, X., Wang, L., and Wang, Z. (2011). Molecular characterization of estrogen receptor genes in Gobiocypris rarus and their expression upon endocrine disrupting chemicals exposure in juveniles. Aquat Toxicol 101, 276-287. Xie, C.X., Mattson, M.P., Lovell, M.A., and Yokel, R.A. (1996). Intraneuronal aluminum potentiates iron-induced oxidative stress in cultured rat hippocampal neurons. Brain Res 743, 271-277. Yang L-H, Ying G-G, Su H-C, Stauber JL, Adams MS, Binet MT. Growth-inhibiting effects of 12 anitbacterial agents and their mixtures on the freshwater microbial GA pseudokirchneriella subcapitata. Environ Toxicol Chem 2008;27:1201–8. Yusein, S., N. Velikova, et al. (2008). "Altered ivermectin pharmacology and defective visual system in Drosophila mutants for histamine receptor HCLB." Invert Neurosci 8(4): 211-222. Zhou, J., Cai, Z.H., and Zhu, X.S. (2010). Are endocrine disruptors among the causes of the deterioration of aquatic biodiversity? Integr Environ Assess Manag 6, 492-498.
摘要: 隨著人類文明的進步及科技的快速發展,環境中暴露著成千上萬的化學物質,對於生物、人類及生態的影響會有多深遠?本研究目的以衛生下水道廢水處理所產生之污泥,以果蠅作為毒性指標生物,作為污泥再利用評估之可行性探討。 採集台中市水資源處理中心之污泥樣品,混合加入果蠅食物餵食,污泥濃度分別為0%、1%、2%、5%、10%、20%、50%及100%,進行(1)F1及F2繁殖力試驗,分析平均羽化量及平均羽化天數,作為生殖毒性評估;(2)F1及F2視網膜功能試驗,分析10日齡及30日齡ERG,作為視網膜功能毒性評估。 F1平均羽化量顯著降低,20%(*p<0.05)、100%(***p<0.001),可能導致生殖毒性;F2平均羽化量顯著增加,1%、2%、5%、10%、50%(***p<0.001)、20%(**p<0.01),可能導致果蠅適應性基因突變;F1與F2生殖變異性大。F1及F2平均羽化天數,5%(**p<0.01),F2較F1有發育晚熟現象。 F1雌蠅ERG10天,50%(*p<0.05)及2%、5%、10%(**p<0.01)及100%(***p<0.001);F1雄蠅ERG10天,2%、20%(**p<0.01)及5%、100%(***p<0.001);F1雌蠅ERG30天,5%、20%、100%(*p<0.05)及2%、50%(**p<0.01)及10%(**p<0.01);F2雌蠅ERG10天,5%(*p<0.05)及10%(**p<0.01);F2雄蠅ERG10天,2%(*p<0.05)及1%、100%(**p<0.01);F2雌蠅ERG30天,100%(*p<0.05);F2雄蠅ERG30天,2%(*p<0.05)及10%(**p<0.01);上述各濃度分析結果,皆對光感有過低或過度反應,污泥可能導致神經毒性,造成果蠅視網膜功能缺陷。 污泥再利用的生物毒性評估結果,污泥對F1及F2具有生殖及神經毒性,可能原因為污泥中含(1)有機營養物質(如C、N、P),造成F2平均產量大增(2)有機化合物,導致生殖毒性(如NP、TCC、BPA)及神經毒性(如PBDEs、BPA)(3)混凝劑Al2(SO4)3導致神經毒性及重金屬砷,對中樞神經及DNA損傷;鋅對呼吸、腸胃道及視覺影響等危害。因此,建議以分子生物技術進階分析蛋白質及RNA,探討果蠅突變與否,作為污泥資源化再利用之可行性評估。 以果蠅作為生物毒性評估的優點,如生命週期短、成本低、操作容易及對環境的敏感度高、可轉殖人類疾病基因及快速篩選生物毒性等,適合作為環境毒性物質的初步評估,防範直接侵入生態系統,降低對生物及人體健康危害之衝擊。
With the progress of human civilization and the rapid development of science and technology, our living environment is exposed to thousands of chemicals. For the biological, human and ecological surroundings, there will be more far-reaching impact. The purpose of this study is using sludge from a wastewater treatment plant in Taichung City to investigate the feasibility of sludge reuse by evaluating the fertility and retina function of Drosophila as toxicity assessment. The sludge samples are collected from Fu-Tian Water Resource Recycling Center in Taichung City. The fly food was mixed with sludge (F/S) at ratios of 0%, 1%, 2%, 5%, 10%, 20%, 50%, or 100%. For (1) F1 and F2 fertility test, the analysis of average numbers of eclosion and required days was the key element in the fertility toxicity assessment; (2) F1 and F2 retinal function test, the analysis of 10 days and 30 days Electroretinogram (ERG) was the main content in the toxicity assessment. F1 significantly reduced in average number of eclosion. 20% (*p<0.05), 100% (***p<0.001) may cause fertility toxicity; F2 significantly increased in average number of eclosion. 1%, 2%, 5%, 10%, 50% (***p<0.001), 20% (**p<0.01) may lead flies to adaptive mutation; F1 and F2 have reproductive variability. Compared with average required days for emergence of F1 and F2, F2 was later than F1 with developmental phenomenon at the concentration 5 % (**p<0.01). F1 female flies ERG10 days, 50% (* p <0.05) and 2%, 5%, 10% (** p <0.01) and 100 %(*** p <0.001); F1 male flies ERG10 days, 2%, 20% (** p <0.01) and 5%, 100 %(*** p <0.001); F1 female flies ERG30 days, 5%, 20%, 100% (* p <0.05) and 2%, 10%,50% (** p <0.01) ; F2 female flies ERG10 days, 5% (* p <0.05) and 10% (** p <0.01); F2 male flies ERG10 days, 2% (* p <0.05) and 1%, 100% (** p <0.01); F2 female flies ERG10 days, 100% (* p <0.05); F2 male flies ERG30 days, 2% (* p <0.05) and 10% (** p <0.01); The results of the analysis all of the concentration. There is a sense of low light or over-reaction. Sludge may lead to neurotoxicity which causes certain defects on Drosophila retinal function. Result of toxicity assessment about sludge reuse reveals that sludge was toxic to fertility and neurons of F1 and F2. Possible reason is that the sludge might contain (1) organic nutrients (ex: C, N, P), so that F2 significantly increased in average eclosion, (2) organic compounds, leading to fertility toxicity (ex: NP, TCC, BPA) and neurotoxicity (ex: PBDEs, BPA), (3) coagulant Al2(SO4)3 lead to neurotoxicity and heavy metals arsenic which can cause damage to the central nervous system and DNA; zinc has negative influence or does harm to respiration, gastrointestinal and vision. Therefore, advanced molecular biology techniques are proposed to analyze proteins and RNA to investigate if flies may mutate, that serves as a feasibility assessment of sludge-recycled reuse. The advantages of flies as an assessment of biological toxicity are short life cycle, low cost, easy operation, high sensitivity to the environment, human disease genes can be transgenic, rapid toxicity screening etc. Flies are suitable as a preliminary assessment of environmental toxic substances to prevent and reduce direct invasion to the ecosystem, and the risk of biological and human health impacts.
URI: http://hdl.handle.net/11455/5083
其他識別: U0005-2707201113392100
文章連結: http://www.airitilibrary.com/Publication/alDetailedMesh1?DocID=U0005-2707201113392100
Appears in Collections:環境工程學系所

文件中的檔案:

取得全文請前往華藝線上圖書館



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.