Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/5112
標題: 不同能量厭氧培養下紫色不含硫光合作用細菌 除磷能力之探討
Phosphate-removing ability of purple non-sulfur bacteria anaerobicly cultivated with different energy source
作者: 許淑娟
Hsu, Shu-Chuan
關鍵字: 紫色不含硫光合作用細菌
Biological phosphorus removal
除磷能力
生物除磷模式
PAOs
purple nonsulfur bacteria
Rhodopseudomonas palustris
polyphosphate accumulating mechanism
出版社: 環境工程學系所
引用: 中文文獻 吳培堯 (1991) 以紫色不含硫光合作用菌處理豬糞尿廢水之硫化氫. 國立中興大學, 台中. 呂慶慧 (1992) 活性污泥法添加即未添加光合作用細菌處理屠宰廢水之功能比較. 國立成功大學, 台南. 李季眉 (1988) 以紫色含硫光合作用細菌amoebobacter Pedioformis Stain Cml2處理豬糞尿廢水之硫化氫. In 第十三屆廢水處理技術研討會論文集. 第206~215頁. 李季眉 (1990) 以固定化之紫色含硫光合作用細菌處理豬糞尿廢水之硫化氫. In 第十五屆廢水處理技術研討會論文集. 第313~327頁. 李季眉 (1991) 以固定化之紫色含硫光合作用細菌處理豬糞尿廢水之硫化氫-連續流試驗. In 第十六屆廢水處理技術研討會論文集. 第157~168頁. 李銘亮 (2002) 微生物生理學. 台北: 藝軒圖書出版社. 林瑤玓 (2002) 紫色不含硫光合作用細菌於連續流產氫之研究. 國立中興大學, 台中. 涂良君 (1998) 產氫光合作用細菌之分離與篩選. 國立中興大學, 台中. 梁志銘 (2003) 以分子生物方法探討活性污泥中紫色不含硫光和作用細菌. 國立中興大學, 台中. 梁凱莉及高惠娟 (1997) 普通生物化學. 台北: 合記圖書出版社. 陳嘉芬 (1999) 現代遺傳學. 台北市: 藝軒圖書出版社. 陳樹功及王西華 (1982) 利用光合菌處理澱粉廢液-Rhodopseudomonas 之分離與應用. In 第一屆廢水處理技術研討會論文集. 第213~223頁. 葉穎緻 (2004) 紫色不含硫光合作用細菌在不同培養條件下累積聚磷酸鹽之能力探討. 國立中興大學, 台中. 鄭景鴻 (2005) 生物除磷及非除磷系統中添加紫色不含硫光合作用細菌之生物除磷加強效果. 國立中興大學, 台中. 蕭景庭 (1999) 產氫光合作用細菌之生理特性研究 國立中興大學, 台中. 英文文獻 Abughararah, Z.H., and Randall, C.W. (1991) The Effect of Organic Compounds on Biological Phosphorus Removal. Water Science and Technology 23: 585-594. Achenbach, L.A., Carey, J., and Madigan, M.T. (2001) Photosynthetic and Phylogenetic Primers for Detection of Anoxygenic Phototrophs in Natural Environments. Appl. Environ. Microbiol. 67: 2922-2926. Albers, H., and Gottschalk, G. (1976) Acetate Metabolism in Rhodopseudomonas Gelatinosa and Several Other Rhodospirillaceae. Archives of Microbiology 111: 45-49. Amann, R.I., Krumholz, L., and Stahl, D.A. (1990) Fluorescent-Oligonucleotide Probing of Whole Cells for Determinative, Phylogenetic, and Environmental Studies in Microbiology. Journal of Bacteriology 172: 762-770. APHA (1995) Standard Methods for the Examination of Water and Wastewater. Washington, DC: American Public Health Association. Argaman, Y. (1991) Biological Nutrient Removal. In Biological Degradation of Wastes. Martin, A.M. (ed). New found land: Elsevier Applied Science, p. 85~101. Balows, A., Truper, H.G., Dworkin, M., Harder, W., and Schliefer, K.-H. (1992) The Prokatyotes. Berlin: Springer-Verlag. Barnard, J.L. (1976) A Review of Biological Phosphorus Removal in the Activated Sludge Process. Water SA 2: 136~144. Beatty, J.T., and Gest, H. (1981) Biosynthetic and Bioengergetic Functions of Citric Acid Cycle Reaction in Rhodpseudomonas Capsulata. Journal of Bacteriology 148: 584-593. BIO-RAD (2003) Protocol of Dcodetm Universal Mutation Detection System: BIO-RAD. Blankenship, R.E., Madigan, M.T., and Bauer, C.E. (1995) Anoxygenic Photosynthetic Bacteria. Dordrecht: Kluwer Academic Press. Bond, P., Hugenholtz, P., Keller, J., and Blackall, L. (1995) Bacterial Community Structures of Phosphate-Removing and Non-Phosphate- Removing Activated Sludges from Sequencing Batch Reactors. Appl. Environ. Microbiol. 61: 1910-1916. Bond, P.L., Erhart, R., Wagner, M., Keller, J., and Blackall, L.L. (1999) Identification of Some of the Major Groups of Bacteria in Efficient and Nonefficient Biological Phosphorus Removal Activated Sludge Systems. Appl. Environ. Microbiol. 65: 4077-4084. Bryant, D.A. (1994) The Molecular Biology of Cyanobacteria. Dordrecht: Kluwer Academic Press. Carlozzi, P., and Sacchi, A. (2001) Biomass Production and Studies on Rhodopseudomonas Palustris Grown in an Outdoor, Temperature Controlled, Underwater Tubular Photobioreactor. Journal of Biotechnology 88: 239-249. Clayton, R.K., and Sistrom, W.R. (1978) The Photo-Synthetic Bacteria. In: Plenum press, p. 13. Comeau, Y., Hall, K.J., Hancock, R.E.W., and Oldham, W.K. (1986) Biological Model for Enhanced Biological Phosphorous Removal. Water Research 20: 1511-1182. Crocetti, G.R., Hugenholtz, P., Bond, P.L., Schuler, A., Keller, J., Jenkins, D., and Blackall, L.L. (2000) Identification of Polyphosphate-Accumulating Organisms and Design of 16s Rrna-Directed Probes for Their Detection and Quantitation. Appl. Environ. Microbiol. 66: 1175-1182. De Haas, D.W., Wentzel, M.C., and Ekama, G.A. (2000) The Use of Simultaneous Chemical Precipitation in Modified Activated Sludge Systems Exhibiting Biological Excess Phosphate Removal Part 1: Literature Review. Water SA 26: 439-452. Deinema, M.H., Van Loosdrecht, M., and Scholten, A. (1985) Some Physiological Characteristics of Acinetobacter Spp. Accumulating Large Amounts of Phosphate. Water Science and Technology 17: 119-125. Dutton, P.L., and Evans, W.C. (1969) The Metabolism of Aromatic Compounds by Rhodopueudomonas Palustris:A New Reductive Method of Aromatic Ring Metabolism Biochemical Jounal 113: 525-536. Feng, T.H. (1962) Phosphorus and the the Activated Sludge Process. Water and Sewage Works: 431-434. Ferris, M., and Ward, D. (1997) Seasonal Distributions of Dominant 16s Rrna-Defined Populations in a Hot Spring Microbial Mat Examined by Denaturing Gradient Gel Electrophoresis. Appl. Environ. Microbiol. 63: 1375-1381. Fibler, J., Schirra, C., Kohring, G.W., and Giffhorn, F. (1994) Hydrogen Production from Aromatic Acids by Rhodopseudomonas Palustris. Applied Microbiology and Biotechnology 41: 395-399. Friedberg, I., and Avigad, G. (1968) Structures Containing Polyphosphate in Micrococcus Lysodeikticus. J. Bacteriol. 96: 544-553. Fuhs, G.W., and Chen, M. (1975) Microbiological Basis of Phosphate Removal in the Activated Sludge Process for the Treatment of Wasterwater. Microbial Ecological 2: 119-138. Ghigliazza, R., Lodi, A., and Rovatti, M. (1998) Study on Biological Phosphorus Removal Process by Acinetobacter Lwoffi: Possibility to by-Pass the Anaerobic Phase. Bioprocess and Biosystems Engineering 18: 207-211. Gibbons, N.E., and Murray, R.G.E. (1978) Proposals Concerning the Higher Taxa of Bacteria. International Journal of Systematic Bacteriology 28: 1-6. Hansen, T.A., and van Gemerden, H. (1972) Sulfide Utilization by Purple Nonsulfur Bacteria. Archives of Microbiology 86: 49-56. Harwood, C.S., and Gibson, J. (1988) Anaerobic and Aerobic Metabolism of Diverse Aromatic Compounds by the Photosynthetic Bacterium Rhodopseudomonas Palustris. Appl. Environ. Microbiol. 54: 712-717. Hesselmann, R.P.X., Werlen, C., Hahn, D., van der Meer, J.R., and Zehnder, A.J.B. (1999) Enrichment, Phylogenetic Analysis and Detection of a Bacterium That Performs Enhanced Biological Phosphate Removal in Activated Sludge. Systematic and Applied Microbiology 22: 454-465. Hirotani, H., Agui, Y., Kobayashi, M., and Takahashi, E. (1990) Removal of Coliphages from Waste Water Effluent by Phototrophic Bacteria. Water Science and Technology 22: 59-63. Hong, S.N., Krichten, D., Kisenbauer, K.S., and Sell, R.L. (1982) A Biological Wastewater Treatment System for Nutrient Removal. In Usepa Workshop on Biological Phosphorus Removal. USA: Maryland. Hustede, E., Steinb羹chel, A., and Schlegel, H.G. (1993) Relationship between the Photoproduction of Hydrogen and the Accumulation of Phb in Non-Sulphur Purple Bacteria. Applied Microbiology and Biotechnology 39: 87-93. Imhoff, J.F. (2002) Phototrophic Purple and Green Bacteria in Marine and Hypersaline Environments. In Bitton. Gabriel (ed). New York: Encyclopedia of Environmental Microbiology, pp. 2470-2489. Imhoff, J.F., and Trüper, H.G. (1992) The Genus Rhodospirillum and Related Genera. In The Prokaryotes : A Handbook on the Biology of Bacteria: Ecophysiology, Isolation, Identification and Applications: Springer-Verlag. Imhoff, J.F., Truper, H.G., and Phennig, N. (1984) Rearrangement of the Species and Genera of the Phototrophic "Purple Nonsulfur Bacteria". International Journal of Systematic Bacteriology 34: 340-343. Ingraham, J.L., Maaloe, O., and Neidhardt, F.C. (1983) Growth of the Bacteria Cell. Sunderland, Massachusetts. Karr, E.A., Sattley, W.M., Jung, D.O., Madigan, M.T., and Achenbach, L.A. (2003) Remarkable Diversity of Phototrophic Purple Bacteria in a Permanently Frozen Antarctic Lake. Appl. Environ. Microbiol. 69: 4910-4914. Kawaharasaki, M., Tanaka, H., Kanagawa, T., and Nakamura, K. (1999) In Situ Identification of Polyphosphate-Accumulating Bacteria in Activated Sludge by Dual Staining with Rrna-Targeted Oligonucleotide Probes and 4′,6-Diamidino-2-Phenylindol (Dapi) at a Polyphosphate-Probing Concentration. Water Research 33: 257-265. Kobayashi, M., and Nakanishi, H. (1971) Construction of a Purification Plant for Polluted Water Using Photosynthetic Bacteria. Journal of Fermentation Technology 40: 817-825. Kondratieva, E.N., Pfenning, N., and Truper, H.G. (1992) The Phototrophic Prokaryetes. In The Prokaryotes: A Handbook on the Biology of Bacteria: Ecophysiology, Isolation, Identification, Applications. Balows, and Albert (eds): Springer-Verlag. Kong, Y., Nielsen, J.L., and Nielsen, P.H. (2005) Identity and Ecophysiology of Uncultured Actinobacterial Polyphosphate-Accumulating Organisms in Full-Scale Enhanced Biological Phosphorus Removal Plants. Appl. Environ. Microbiol. 71: 4076-4085. Kornberg, A. (1995) Inorganic Polyphosphate: Toward Making a Forgotten Polymer Unforgettable. J. Bacteriol. 177: 491-496. Kortstee, G.J.J., Appeldoorn, K.J., Bonting, C.F.C., van Niel, E.W.J., and van Veen, H.W. (1994) Biology of Polyphosphate-Accumulating Bacteria Involved in Enhanced Biological Phosphorus Removal. FEMS Microbiology Reviews 15: 137-153. Larimer, F.W., Chain, P., Hauser, L., Lamerdin, J., Malfatti, S., Do, L., Land, M.L., Pelletier, D.A., Beatty, J.T., Lang, A.S., Tabita, F.R., Gibson, J.L., Hanson, T.E., Bobst, C., Torres, J.L.T.y., Peres, C., Harrison, F.H., Gibson, J., and Harwood, C.S. (2004) Complete Genome Sequence of the Metabolically Versatile Photosynthetic Bacterium Rhodopseudomonas Palustris. Nat Biotech 22: 55-61. Liu, W.-T., Mino, T., Nakanura, K., and Matsuo, T. (1996) Glycogen Accumulating Population and Its Anaerobic Substrate Uptake in Anaerobic-Aerobic Activated Sludge without Biological Phosphate Removal. Water Research 30: 75-82. Liu, W., Marsh, T., Cheng, H., and Forney, L. (1997) Characterization of Microbial Diversity by Determining Terminal Restriction Fragment Length Polymorphisms of Genes Encoding 16s Rrna. Appl. Environ. Microbiol. 63: 4516-4522. Mackenthun, K.M. (1973) Eutrophication and Biological Associations. In Environmental Phosphorus Handbood. Griffith, E.J., Beeton, A., Spencer, J.M., and Mitchell, D.T. (eds). New York: John Wiley and Sone., pp. 613-622. Madigan, M.T., Martinko, J.M., and Parker, J. (2003) Brock Biology of Microorganisms. USA.: Prentice Hall International. Madigan, M.T., Martinko, J.M., and Parker, J. (2006) Brock Biology of Microorganisms. USA.: Prentice Hall International. Maidak, B.L., Cole, J.R., Lilburn, T.G., Parker, C.T., Jr, Saxman, P.R., Farris, R.J., Garrity, G.M., Olsen, G.J., Schmidt, T.M., and Tiedje, J.M. (2001) The Rdp-Ii (Ribosomal Database Project). Nucl. Acids. Res. 29: 173-174. Mamais, D., and Jenkins, D. (1992) The Effect of Mcrt and Temperature on Enhanced Biological Phosphorus Removal Water Science and Technology 26: 955-965. Meinhold, J., Filipe, C.D.M., Daigger, G.T., and Isaacs, S. (1999) Characterization of the Denitrifying Fraction of Phosphate Accumulating Organisms in Biological Phosphate Removal. Water Science and Technology 39: 31-42. Metcalf, and Eddy (2003) Processes for Biological Phosphorus Removal. In Wastewater Engineering Treatment and Reuse. Franklin, L.B., and H. David, S. (eds). USA: McGraw-Hill, pp. 799-815. Mino, T. (2000) Review: Microbial Selection of Polyphosphate-Accumulating Bacteria in Activated Sludge Wastewater Treatment Processes for Enhanced Biological Phosphate Removal. Biochemistry (Moscow) 65: 341-348. Mino, T., van Loosdrecht, M.C.M., and Heijnen, J.J. (1998) Microbiology and Biochemistry of the Enhanced Biological Phosphate Removal Process. Water Research 32: 3193-3207. Mino, T., Arun, V., Tsuzuki, Y., and Matsuo, T. (1987) Effect of Phosphorous Accumulation on Acetate Metabolism in Biological Phosphrous Removal Process. In Biological Phosphate Removal Form Waste Water. Ramadori, R. (ed). Japan: Pegamon, pp. 27-38. Mino, T., Liu, W.T., Satoh, H., and Matsuo, T. (1997) Microbial Ecology. In: Symp., pp. 509-616. Momba, M.N.B., and Cloete, T.E. (1996) The Relationship of Biomass to Phosphate Uptake by Acinetobacter Junii in Activated Sludge Mixed Liquor. Water Research 30: 364-370. Muyzer, G., de Waal, E.C., and Uitterlinden, A.G. (1993) Profiling of Complex Microbial Populations by Denaturing Gradient Gel Electrophoresis Analysis of Polymerase Chain Reaction-Amplified Genes Coding for 16s Rrna. Appl. Environ. Microbiol. 59: 695-700. Nakamura, K., Masuda, K., and Mikami, E. (1991) Isolation of a New Type of Polyphosphate Accumulating Bacterium and Its Phosphate Removal Characteristics. J. Ferment. Bioeng. 71: 258-263. Nakamura, K., Hiraishi, A., Yoshimi, Y., Kawarasaki, M., Masuda, K., and Kamagata, Y. (1995a) Microlunatus Phosphovorus Gen. Nov., Sp. Nov., a New Gram-Positive Polyphosphate-Accumulating Bacterium Isolated from Activated Sludge. Int. J. Syst. Bacteriol. 45: 17-22. Nakamura, K., Hiraishi, A., Yoshimi, Y., Kawaharasaki, M., Masuda, K., and Kamagata, Y. (1995b) Microlunatus Phosphovorus Gen. Nov., Sp. Nov., a New Gram-Positive Polyphosphate-Accumulating Bacterium Isolated from Activated Sludge. Int J Syst Bacteriol 45: 17-22. Nesmeyanova, M.A. (2000) Polyphosphates and Enzymes of Polyphosphate Metabolism in Escherichia Coli. Biochemistry (Moscow) 65: 309-314. Novak, R.T., Gritzer, R.F., Leadbetter, E.R., and Godchaux, W. (2004) Phototrophic Utilization of Taurine by the Purple Nonsulfur Bacteria Rhodopseudomonas Palustris and Rhodobacter Sphaeroides. Microbiology 150: 1881-1891. Oh, Y.-K., Seol, E.-H., Kim, M.-S., and Park, S. (2004) Photoproduction of Hydrogen from Acetate by a Chemoheterotrophic Bacterium Rhodopseudomonas Palustris P4. nternational Journal of Hydrogen Energy 29: 1115-1121. Pattarkine, V.M., and Randall, C.W. (1999) The Requirement of Metal Cations for Enhanced Biological Phosphorus Removal by Activated Sludge. Water Science and Technology 40: 159-165. Pereira, H., Lemos, P.C., Reis, M.A.M., Crespo, J.P.S.G., Carrondo, M.J.T., and Santos, H. (1996) Model for Carbon Metabolism in Biological Phosphorus Removal Processes Based on in Vivo 13c-Nmr Labelling Experiments. Water Research 30: 2128-2138. Pfennig, N. (1978) Rhodocyclus Purpureus Gen. Nov. And Sp. Nov., a Ring-Shaped Vitamin B12-Requiring Member of the Family Rhodospirillaceae. International Journal of Systematic Bacteriology 28: 283-288. Pijuan, M., Guisasola, A., Baeza, J.A., Carrera, J., Casas, C., and Lafuente, J. (2005) Aerobic Phosphorus Release Linked to Acetate Uptake: Influence of Pao Intracellular Storage Compounds. Biochemical Engineering Journal 26: 184-190. Poulsen, L., Ballard, G., and Stahl, D. (1993) Use of Rrna Fluorescence in Situ Hybridization for Measuring the Activity of Single Cells in Young and Established Biofilms. Appl. Environ. Microbiol. 59: 1354-1360. Primrose, S.B., and Wardlaw, A.C. (1982) Sourcebook of Experiments for the Teaching of Microbiology: Society for general microbiology by academic press. Randall, A.A., Benefield, L.D., Hill, W.E., Nicol, J.-P., Boman, G.K., and Shuh-Ren, J. (1997) The Effect of Volatile Fatty Acids on Enhanced Biological Phosphorus Removal and Population Structure in Anaerobic/Aerobic Sequencing Batch Reactors. Water Science and Technology 35: 153-160. Regan, J.M., Harrington, G.W., and Noguera, D.R. (2002) Ammonia- and Nitrite-Oxidizing Bacterial Communities in a Pilot-Scale Chloraminated Drinking Water Distribution System. Appl. Environ. Microbiol. 68: 73-81. Rittmann, R.E., and McCarty, P.L. (2001) Environmental Biotechnology-Principles and Applications. In. USA.: McGraw-Hill. Roberto De Philippis, Alba Ena, Monica Guastini, Sili, C., and Vincenzini, M. (1992) Factors Affecting Poly-/3-Hydroxybutyrate Accumulation in Cyanobacteria and in Purple Non-Sulfur Bacteria. FEMS Microbiology Reviews 103: 187-194. Sawada, H., and Rogers, P.L. (1977) Photosynthetic Bacteria in Waste Treatment-Role of Rhodopseudomonas Capsulata with Agriculture Industrial Effluents. Journal of Fermentation Technology 55: 326-336. Schlegel, H.G. (1986) General Microbiology: Cambridege Unibersity press. Seviour, R.J., Mino, T., and Onuki, M. (2003) The Microbiology of Biological Phosphorus Removal in Activated Sludge Systems. FEMS Microbiology Reviews 27: 99-127. Shively, J.M., Van Keulen, G., and Meijer, W.G. (1998) Something from Almost Nothing:Carbon Dioxide Fixation in Chemoautotruphs. Annu. Rev. Microbiol. 52: 191-230. Sidat M, Bux F, and HC, K. (1999) Polyphosphate Accumulation by Bacteria Isolated from Activated Sludge. Water SA 25: 2. Srinath, E., Itgens, R.L., and Pfenning, N. (1959) Rapid Removal of Phosphorus from Sewage by Activated Sludge. Experimental Mycology 15: 39-40. Srivastava, S., and Srivastava, A.K. (2005) Studies on Phosphate Uptake by Acinetobacter Calcoaceticus under Aerobic Conditions. Enzyme and Microbial Technology 36: 362-368. Stante, L., Cellamare, C.M., Malaspina, F., Bortone, G., and Tilche, A. (1997) Biological Phosphorus Removal by Pure Culture of Lampropedia Spp. Water Research 31: 1317-1324. Streichan, M., Golecki, J.R., and Schon, G. (1990) Polyphosphate-Accumulating Bacteria from Sewage Plants with Different Processes for Biological Phosphorus Removal. FEMS Microbiology Ecology 73: 113-124. Tandoi, V., Majone, M., May, J., and Ramadori, R. (1998) The Behaviour of Polyphosphate Accumulating Acinetobacter Isolates in an Anaerobic-Aerobic Chemostat. Water Research 32: 2903-2912. Tsuneda, S., Miyauchi, R., Ohno, T., and Hirata, A. (2005) Characterization of Denitrifying Polyphosphate-Accumulating Organisms in Activated Sludge Based on Nitrite Reductase Gene. Journal of Bioscience and Bioengineering 99: 403-407. Ubukata, Y., and Takii, S. (1998) Some Physiological Characteristics of a Phosphate-Removing Bacterium, Microlunatus Phosphovorus, and a Simplified Isolation and Identification Method for Phosphate-Removing Bacteria. Water Science and Technology 38: 149-157. Wagner, M., Rath, G., Amann, R., Koops, H.P., and Schleifer, K.H. (1995) In Situ Identification of Ammonia-Oxidizing Bacteria. Systematic and Applied Microbiology 18: 251-264. Wagner, M., Erhart, R., Manz, W., Amann, R., Lemmer, H., Wedi, D., and Schleifer, K. (1994) Development of an Rrna-Targeted Oligonucleotide Probe Specific for the Genus Acinetobacter and Its Application for in Situ Monitoring in Activated Sludge. Appl. Environ. Microbiol. 60: 792-800. Wampler, D.A., and Ensign, S.A. (2005) Photoheterotrophic Metabolism of Acrylamide by a Newly Isolated Strain of Rhodopseudomonas Palustris. Appl. Environ. Microbiol. 71: 5850-5857. Winder, F.G., and Deneny, J.M. (1957) The Metabolism of Inorganic Polyphosphate in Mycobacteria. J. Gen. Microbiol. 17: 573-585. Woese, C.R. (1978) Bacterial Evolution. Microbilogy Review 51: 211-271. Zajic, J.E., Kosaric, N., and Brosseau, J.D. (1978) Microbial Production of Hydrogen. Adv. Biochem. Eng. 9: 57-109.
摘要: 紫色不含硫光合作用細菌在廢水處理的應用上,已經成功地被使用於分解高濃度COD之豬糞尿廢水、養殖廢水上;近年來,更因為此類細菌具有分解有機污染物,產生氫氣的能力,而被廣泛的利用於潔淨能源的開發研究上。中興大學環工系在進行產氫研究時,也意外發現紫色不含硫光合作用細菌能由廢水中攝取磷酸鹽,進而以聚磷酸鹽形式累積於體內,且此類紫色不含硫光合作用細菌的生物除磷機制,不僅與常見之厭氧好氧交替生物除磷模式不同,其體內磷酸鹽累積量甚至達到一般除磷菌除磷能力之二倍至三倍以上。在模廠研究當中,也發現若將純種的紫色不含硫光合作用細菌添加入具除磷反應槽內,可加強反應槽的除磷效果。 因此本研究將探討實驗室目前已分離出之純種紫色不含硫光合作用細菌菌株-Rhodopseudomonas palustris GN11之磷酸鹽攝取能力,期望能找出Rhodopseudomonas palustris GN11最佳除磷條件並推測屬於紫色不含硫光合作用細菌特有的生物除磷模式,希望能進一步將此菌株應用於生物除磷系統中。 研究結果發現厭氧環境下紫色不含硫光合作用細菌於對數生長期間累積PHB於菌體內,並於生長穩定期初期,開始累積磷酸鹽於菌體內,此現象與一般認定除磷菌之除磷機制不同,且其累積磷酸鹽於菌體內之時間點亦與一般認定除磷菌有差異。另一方面,藉由控制光源及碳源,可掌握菌株Rhodopseudomonas palustris GN11攝取磷酸鹽及代謝聚磷酸鹽的時機。因此,初步推測藉由掌握Rhodopseudomonas palustris GN11尚未累積磷酸鹽於菌體內之時機,並將此菌株於厭氧環境添加於生物除磷系統中,可提升生物除磷系統之除磷效果;且此生物添加方式不但可減少一般除磷系統厭氧/好氧交換下之氧氣提供成本,亦可使原本的處理設備於不需更改處理程序下,即可提高除磷效果。
Biological phosphorus removal from wastewater had been accomplishing in activated sludge reactors by proper process design. One of the potential PAOs in EBPR system was believed to be the Rhodocyclus-related microorganism which was identified phylogenetically close to the Rhodosiprillums. However, the role they play in systems have not been fully understood yet. Previous studies from our research demonstrated that the purple nonsulfur bacteria isolated from activated sludge could remove phosphorus from wastewater by accumulate it as intracellular polyphosphate. Polyphosphate-accumulating ability of the phototrophic purple nonsulfur bacteria was found to be twice stronger than other PAOs in both anaerobic and aerobic condition, and this model of biological phosphorus removal were different with the PAOs model described by scientists. Furthermore, the results also showed that most of the isolated pure cultures could accumulate polyphosphate under both anaerobic-only and aerobic-only condition. This observation was not only never been reported on the literatures but also quite different from the well-known anaerobic/aerobic cycling phosphorus accumulation model. It was demonstrated that bioaugmentation of purple nonsulfur bacteria with high polyphosphate accumulating ability into lab-scale activated sludge system could enhance the overall efficiency of phosphorus removal. All of these results prompted an interesting research subject on the phosphorus accumulating mechanism the purple nonsulfur bacteria. In this proposal, polyphosphate accumulating phenomenon performed by the purple nonsulfur bacteria and the pathway of this polyphosphate metabolism were studied. Results of this study showed that Rhodopseudomonas palustris GN11 could accumulate polyphosphate when anaerobicly incubated, and it started accumulating polyphosphate when entering the stationary phase. Results of this study will be helpful to understand and promote to establish a polyphosphate accumulating mechanism by purple nonsulfur bacteria.
URI: http://hdl.handle.net/11455/5112
其他識別: U0005-0507200616362800
文章連結: http://www.airitilibrary.com/Publication/alDetailedMesh1?DocID=U0005-0507200616362800
Appears in Collections:環境工程學系所

文件中的檔案:

取得全文請前往華藝線上圖書館

Show full item record
 
TAIR Related Article
 
Citations:


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.