Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/5114
標題: 多元醇法製備奈米銅觸媒於VOC催化之研究:不同前驅物之探討
The effect of precursors on copper nanocatalyst prepared with polyol process for VOC oxidation
作者: 傅瑛惠
Fu, Ying-Hui
關鍵字: Catalytic incineration
觸媒焚化
polyols process
catalyst
VOCS
toluene
多元醇法
觸媒
揮發性有機物
甲苯
出版社: 環境工程學系所
引用: 參考文獻 Alvim-Ferraz, M. C. M., and Gaspar, C. M. T. B., Journal of Physics and Chemistry of Solids, Vol. 65, pp.655 (2004). Arsenilevic, Z. Lj., Grbic, B.V., Grbavcic, Z., Dradic, B.N. and Terlecki-Barivcevic, A.V., Chemical Engineering Science 54, pp.1519 (1999). Armadi, I.S., Wang, Z.L., Green, T.C., Henglein, A., El-Sayed, M.A., Science, vol. 272, pp.1924 (1996). Auer, E., Freund, A., Pietsch, J. and Tacke, T., Applied Catalysis A: General, vol. 173, pp. 259 (1998). Barresi, A. A., Baldi, G., Industrial Engineering Chemical Research, Vol.33, pp.2964 (1994). Brink, R. W., Louw, R., Mulder, P., Applied Catalysis B: Environmental, Vol.16, pp. 219 (1998). Bond, G. C., Thompson, D. T., Catalysis, Rev.-Scl. Engineering41, pp.319 (1999). Bonet, F., Delmas, V., Grugeon, S., Herrera Urbina, R., Silvert, P-Y., NanoStructures Materials, Vol.11, pp.1277 (1999). Bonet, F., Grugeon, S., Herrera Urbina, R., Tekaia-Elhsissen, K., Tarascon, J.-M., Solid State Science, Vol. 4, pp.665 (2002). Burch, R. R., Urbano, F.J. and Loader, P. K. Applied Catalysis A: General,123,173 (1995). Burgos, N., Paulis, M., Antxustegi, M. M., Montes, M., Applied Catalysis B: Environmental , Vol. 38, pp.251 (2002). Carotenuto,G., Applied Organometallic Chemistry, Vol. 15, pp.344 (2001). Chen, C. L., M. S. Thesis, Graduate Inst. of Environ. Engineering, National Sun Yet Sen Univ., Kaohusing, Taiwan, R.O.C. (1993). Chen, C. M., Jehng, J. M., Applied Catalysis A : General, Vol. 267, pp.103 (2004). Cheng, L. S., Yang, R. T., Chen, N., Journal of Catalysis, Vol 164, pp.70 (1996) Chu, H., Lee, W. T., The Science of the Total environ, Vol. 209, pp.217 (1998). Chu, W., Windawi, H., Chemical Engineering Progress, Vol.92, pp.37-43 (1996). Devinny J. S., Deshusses M. A., Webster T. S., Lewis Publishers, (1998). Don, J. A., Feenstra L., In Proceedings of Symposium on Characterization and Control of Odoriferous Pollutants in Process Industrirs : Lonvain-La Neuve(Belgium), (1984). Farrauto, R.J., Bartholomew, C.H., Fundamentals of Industrial Catalytic Processes. Blackie, Chapman & Hall, London. (1997) Boccuzzi, F. A.Chiorino, M. Gargano, N. Ravasio, Journal of Catalysis,Vol. 165,pp.140, (1997). Figueiredo, J. L., Pereira, M. F. R., Freitas, M. M. A., Orfao, J. J.M., Carbon, Vol 37, pp1379 (1999). Garbowski, E., Labalme, V., Benhamon, N., Guillhaume, N., Primet, M., Applied Catalysis A, General, Vol 66, pp.351 (1995). Garetto, T. F. , Apesteguia, C. R. Catalysis Today, Vol 62, pp.189 (2000). Goralski, C.T. Jr., Schmidt, L.D. AIChE Journal, Vol.44,No.8 pp.1880 (1998). Guisnet, M., Dégé, P., magnoux, P. Applied Catalysis B:Environmental, Vol.20, pp.1 (1999). Haruta, M. Catalysis Today , Vol 36, pp 153. (1997) Heck, R.M., Farrauto, R.J., Van Nostrand Reinhold, New York (1995) Hirai, H.,Nakao., Y., Toshima, N., Journal of macromolecular sciene part a : chemistry, Vol. 13, pp.727 (1979). Horsley, J. A. Catalytica Environmental Report No E4, Catalytica Studies Division, Mountain View, CA, USA(1993). Jaworska-Galas, Z. et al., Journal of Catalysis,Vol.145,pp.450(1994) Jiang, L., Sun, G., Zhou, Z., Zhou, W., Xin, Q., Catalysis Today, vol. 93, pp.665 (2004). Ken-ichi Shimizu, Hajime Maeshima, Atsushi Satsuma, Tadashi Hattori, Applied Catalysis B:Environmental,Vol.18,p.163 (1998). Kim, Sang Chai, Journal of Hazardous Materials, Vol 91, pp.285 (2002). Kurihara, L.K., Chow, G.M., Schoen, P.E., NanoStructured Materials, Vol 5, pp.607 (1995). Lahousse, C., Bernier, A., Grange, P., Delmon, B., Papaefthimiou, P., Ioannides, T., Verykios, X. Journal of Catalysis, Vol 178, pp. 214 (1998). Leony Leon, C. A., Radovic, L.R. In: Thrower PA, editor, Chemistry and physics of carbon, Vol. 24, New York: Marcel Dekker, pp.213 (1994). Li, Guohui, Hu, Linjie, Josephine M. Hill, Applied Catalysis A, General, Vol 301, pp.16 (2006). Lojewska, J., Kolodziej, A., Dynarowicz-Latka, P., Weselucha-Birczynska, A,. Catalysis Today, Vol 101, pp.81 (2005) . Lojewska, J., Kolodziej, A., Zak, J., Stoch, J., Catalysis Today, Vol 105, pp.655 (2005). Luo, M. F., Yuan, X. X., Zhen, X. M., Applied Catalysis A, General, Vol 175, pp.121 (1998). Lyubovski, M., Pfefferle, L., Catalysis Today , Vol 47, pp.29 (1999). Lua,A.C., Guo, J. Carbon, Vol 38, pp.,1089 (2000). Miyazaki, A., Balint, I., Aika, K., Nakano, Y., Journal of Catalysis, Vol 204, pp.364 (2001). Never, N. D. Air Pollution Control Engineering McGraw-Hill, International Ed.,1995 Peña O’Shea, V.A. de la, Álvarez-Galván, M.C., Fierro, J.L.G., and Arias, P.L., Applied Catalysis B: Environmental, Vol 57, pp.191 (2005). Papaefthimiou, P., Ionannides, T., X.E.Verykios, Applied Thermal Engineering,15, pp.75 (1998). Pope D., Walker D.S., Moss R.L., Atmospheric Environment.Vol.10No6.pp951 (1976) Radovic, L. R., Rodríguez-Reinoso, F. In: Thrower, P.A., editor. Chemistry and Physics of Carbon, Vol. 25, New York: Marcel Dekker, pp.243 (1997) Ramathan, K.; Spivey, J. J. Combust. Science and Technology. Vol.63,pp.247 (1989) Rodríguez-Reinoso, F. ed. J.W. de Patrick. Edward Arnold, London, pp.253 (1995) Rodríguez-Reinoso, F., Carbon, Vol. 36, pp.159 (1998) Rubbtin, P. et al., Applied Catalysis., Vol.34, pp.239(1987) Salvatore Sciré, Simona Minicó, Carmelo Crisafulli, Cristina Satriano, Alessandro Pistone, Applied catalysis B: Environmental, Vol 40, pp.43 (2003) Satterfield, C. N., 2nd ed. McGraw Hill, New York(1991) Satterfield, C. N., Heterogenous Catalysis in Practice, McGraw Hill, New York(1980) Silvert, P.-Y., Herrera-Urbina, R., Tekaia-Elhsissen, K., J. Mater. Chemical, Vol. 7, pp.293 (1997). Silvert, P.-Y., Herrera-Urbina, R., Duvauchelle, N., Vijayakrishnan, V., Elbsissen, K. T., J. Mater. Chemical, Vol. 6, pp.573 (1996). Simplício L. M., Brandão S. T., Sales E. A., Lietti L., Verduraz F. B., Applied Singoredjo, L., Kapteijn, F., Vandriel, M., Andreini, A., Moulijn, J.A., Ramis, G., and Busca, G., Journal of Catalysis, Vol 150, pp.105 (1994). catalysis B: Environmental, Vol. 63, pp.9 (2005) Spivey, J. L., Industrial Engineering Chemical Research , Vol. 26, pp. 2165 (1987). Stvenson, S.A., Dumesic, J.A., Baker, R.T.K., Ruckenstein, E.Metal-Support Interactions in Catalysis, Sintering, and Redispersion. Van Nostrand Reinhold, New York(1987) Stoeckli, H.F., Carbon, Vol. 28, pp. 1 (1990) Thomas , J.M. Thomas, W.J. Principles of Heterogeneous Catalysis, VCH publishers Inc., New York, NY, (1997) Tichenor, B.A., Palazzolo, M.A., Environ. Prog., Vol.6, pp.172 (1987) Wang, Ching Huei , Chemosphere, Vol.55, NO.1, pp.11 (2004). Weihulst Hua Zi Gao, Applied Catalysis B:Environmental, Vol.17,pp.37 (1998) Wu, J. C.-S., Chang T.- Y., Catalysis Today, Vol. 44, pp.111 (1998) Wu, J. C.-S., Lin, Z.-A., Tsai, F.-M., Pan, J.-W., Catalysis Today, Vol. 63, pp.419 (2000) Xue , L.A., Chen, I.W. J.Mat.,Sci.Let.,11, pp 443(1992) Yang, R.T., Li, W.B., Journal of Catalysis, Vol 155, pp. 414 (1995) Yang, R.T., Tharappiwattananon, N., Long, R.Q., Applied Catalysis B: Environmental, Vol 19, pp.289 (1998) Yazawa, Y. Yoshida, H. Takagi, N. Komai , S. Satsuma, A. and Hattori, T. Applied Catalysis B:Environ., Vol.19,pp.261 (1998). Zhang Jian, Xu Hengyong, Ge Qingjie, Li Wenzhao, Catalysis Communications, Vol. 7, pp.148 (2006) Zhang, M., Zhou, B., Chuang, K. T., Applied Catalysis B: Environmental, Vol 13, pp.123 (1997) Zhang, R., Schwarz, T. A., Applied Catalysis A: General, Vol. 91, pp.57, (1992). Zhenping Zhu, Zhenyu Liu, Hongxian Niu, Tiandin Hu, Applied Catalysis B:Environmental,Vol.26,pp.25 (2000) 柯以侃,“儀器分析”,文京圖書有限公司,台北 (1999)。 柯子星,朱信,曾庭科,“以Pt/γ-Al2O3觸媒焚化處理甲基異丁基酮之研究”,第十六屆空氣污染控制技術研討會論文集,第189頁,(1999)。 李秉傑、邱宏明、王奕凱, “非均勻系催化原理與應用”,渤海堂文化事業有限公司,台北 (1988)。 李定粵,“觸媒的原理與應用”,國立編譯館,台北(1991) 林麟易、洪彰懋、樓基中,“以Pd 觸媒處理排氣中1,3-丁二烯之研究”,第十六屆空氣污染控制技術研討會論文集,第196頁,(1999) 林政剛,林國雄,黃政賢,洪培元,劉光宇,“空氣污染” ,高立圖書有限公司,台北,(1997) 林建宏,“銅觸媒活性中心之研究”,國立中山大學化學研究所,碩士論文,(1990) 林淑婷,“以蓄熱石材觸媒氧化VOCs之研究”,國立中山大學環境工程研究所,碩士論文,(2005) 劉國棟,“VOCS管制趨勢展望”,工業污染防制,第48期,第15頁,1992。 劉國棟,“VOC管制趨勢展望”,工業污染防治,第10 卷,第48期,第13頁,(1993) 劉曾旭,“活性碳製造技術及應用”,產業調查與技術,第127期,第84頁 (1999) 劉東茂,“苯在Au/CeO2與Au/V2O5/CeO2上進行完全氧化反應之研究”,國立中央大學化學工程與材料工程研究所,碩士論文,(2005) 盧裕倉, “以觸媒氧化法處理含揮發性有機物煙道氣之研究”,國立中山大學環境工程研究所,碩士論文,(2000) 黃振家,“揮發性有機廢棄物處理技術:活性碳吸附”,化工,第44卷第3期,第49頁,(1997)。 洪文雅,“揮發性有機廢氣處理技術簡介” 台灣環保產業雙月刊,第21期, (2003)。 環訓所,“氣狀污染物控制設備”, 甲級空氣污染防治專責人員訓練班教材, (2002)。 環訓所,“燃燒原理與污染控制”, 甲級空氣污染防治專責人員訓練班教材,(2002)。 江惠中,“有機廢氣觸媒焚化及廢熱回收”,有機廢氣觸媒焚化處理技術研討會,第1頁,1989年。 江旭禎,“儀器總覽:化學分析儀器”,國科會,第77頁,(1999) 謝祝欽,“半導體業產生有害空氣污染物處理技術”,國科會/環保署八十八年科技合作研究計畫期末報告。 (1999) 行政院環境保護署,“加強抽測廢水處理廠揮發性有機污染物質逸散委託調查檢測工作計畫”成果報告,(1999) 許漢軒、朱信、曾庭科、柯俊德 “ 以Mn2O3/ Al2O3觸媒焚化處理三氯乙烯之研究 ’’ 第十七屆空氣污染控制技術研討會論文集,第262 頁,(2000) 章裕民,“焚化處理技術”,文京圖書有限公司,台北,(2000) 張慶章,“溫室效應對一氧化氮在銅/碳煙觸媒上還原反應行為之探討” ,國立中山大學化學研究所,碩士論文,(1995) 鄭福田,“空氣污染防治(九)”,工業污染防治,第3 卷,第1期,第59頁,(1984) 鄭乙任,“ 影響觸媒焚化之主要因素及操作維護注意事項之探討”,工業污染防治 報導,第123期,第8頁,(1999) 朱小蓉,陳郁文,“工業廢氣特殊處理技術”,化工資訊,第6頁,(1992) 朱小蓉,“流體化床吸附系統於光電業VOC廢棄之處理應用”,2003高科技產業研討會論文集,第52頁,( 2003) 陳俐穎,“多元醇法製備奈米氧化金屬觸媒於低溫下催化VOCs之研究”,國立中興大學環境工程研究所,碩士論文,(2006)。 陳淨修,楊慶熙,“台灣地區有害空氣污染物管制”,工業污染防治,第52卷,第1頁,(1994)。 申永順,顧洋,“以高級氧化程序處理空氣中揮發性有機污染物之研究與應用”,工業污染防治,第14卷,第56期,第278頁,(1995)。 蔡文田、張慶源,“揮發性有機物(VOCS)催化燃燒處理”,環境工程會刊,第四期,第35頁,(1992)。 蔡文田、張慶源,“揮發性有機物污染預防技術”,環保資訊,一月,第35頁,1997。 楊文毅,“鈀觸媒氧化焚化廢氣中有機物之研究”,國立中興大學環工系,碩士論文,(2000) 葉家伶,“以三向觸媒同時處理焚化廢氣中有機污染物、CO 及NOX之研究”,國立中興大學環境工程研究所,碩士論文,(2002) 閻子峰,“奈米催化技術” ,五南圖書出版股份有限公司,台北,(2004)。 吳玟玲,“控制揮發性有機物(VOCs)的熱焚化與觸媒焚化技術”,工業污染防治第39期,第139頁,(1991)。 吳榮宗,“工業觸媒概論” ,國興出版社,新竹 (1995)。 王榮德,“有機溶劑所引起的疾病”,有機廢氣觸媒焚化處理技術研討會,(1989)。 王大中,顧洋,李嘉平,“一甲胺氣體氧化反應之研究反應之研究反應之研究”, 第七屆空氣污染控制技術研討會論文集,第189頁,(1999)。 王世敏,許祖勛,傅晶, “奈米材料原理與製備”,五南圖書出版股份有限公司,台北 (2004) 。 望熙榮,“空氣污染防治”,中央圖書出版社,台北,(2001) 翁澤民, “觸媒焚化處理氣相甲苯之研究”,國立中山大學環境工程研究所,碩士論文,(2004)
摘要: 隨著人們環保意識之高漲與環保法規日趨嚴謹,針對空氣污染問題改善之要求亦由以往之無機的污染物排放或指標性污染物的控制,朝向揮發性有機物(Volatile organic compounds, VOCs)與臭味之污染排放管制。其中觸媒焚化法為控制VOCs最重要的技術。 本研究就是利用多元醇法(polyol process)其操作簡單且金屬大小與形狀容易控制,可以獲得大小均一的金屬活性相且擔持於擔體上的分散性也很好的優點,來製備過渡金屬觸媒,並期望能應用於觸媒焚化來去除VOCs。本實驗選擇活性碳當擔體,而前驅物為硝酸銅、醋酸銅、硫酸銅製備金屬活性相為銅之觸媒,並假設目標污染物為甲苯來進行實驗探討。然後再利用ICPMS、FESEM、XRPD等進行觸媒的特性分析。 實驗結果發現,此種方法所製備的觸媒,金屬活性相分散性佳且微粒大都是屬於奈米級的。當硫酸銅製備觸媒時其負載量並不像另兩種觸媒會隨著增加負載劑量而增加。不同前驅物所製備出來的活性相形態會有所不同;以醋酸銅為前驅物時,會產生一為圓形球體另一為正方體顆粒,有二種形態不一樣的銅粒子分布。金屬銅觸媒,其活性大小分別為:醋酸銅>硝酸銅>>硫酸銅,對甲苯的去除效率,反應溫度越高、甲苯濃度越低、空間速度越小,則去除效果越佳。活性碳金屬銅觸媒,比氧化鋁金屬銅觸媒有較好的轉化率。由研究結果顯示發現,多元醇法可成功製備活性碳奈米銅觸媒,並且應用於觸媒焚化法來去除揮發性有機污染氣體。
Accompany the higher environmental consciousness, the environmental legislation get better exact in our country.For the past few years, Taiwan government has focused on the emission of inorganic pollutants and target pollutants in improving air quality. At present we targetted on the emission of volatile organic compounds and stink pollutants. A catalytic incinerator is one of the best skills in control of VOCs. This study is maily focuses on the preparation of catalyst by polyol process with different precursors. The polyol process is a easy method to operate, and it can enhance the disffusion of active site and control the shape of active phase during the catalyst preparation. Therefore, we expect to prepare the catalyst by polyol process for VOC oxidation. In these experiments, we have choosen the activated carbon as the support, and copper nitrate, copper acetate and copper sulfate were used as precursors to prepare the supported activated carbon-copper catalysts. Toluene was chosen as pollutant for activity test. Characterization of catalyst was done by using ICP-MS, FE-SEM and XRD. The experimental results showed that the copper particles were highly dispersed on the activated carbon with nanosized copper particles. The mass result showed in ICP-MS is same even we increase in the amount of copersulfate but rest of the other two precursors, the mass is increases with increasing amount of precursor. Difference precursor has different type of active phase. For example, when copper acetate was used as the precursor, it has pellet and cubic shape active phase. The activity of copper catalyst is in the order of copper acetate > copper nitrate> copper sulfate. Increasing the reaction temperature, decreasing toluene concentration and space velocity resulted in better conversion of VOCs. Activated carbon with copper catalyst has better invert efficiency than aluminum oxide-copper catalyst. From these results, we are concluding that the activated carbon with copper catalyst successfully prepared by polyols process can apply to Catalytic incineration to rid of the volatile organic pollution gas.
URI: http://hdl.handle.net/11455/5114
其他識別: U0005-0602200720142300
文章連結: http://www.airitilibrary.com/Publication/alDetailedMesh1?DocID=U0005-0602200720142300
Appears in Collections:環境工程學系所

文件中的檔案:

取得全文請前往華藝線上圖書館



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.