Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/5118
標題: 奈米碳管觸媒於氣狀污染物之去除研究
Study the removal of gas pollution over carbon nanotube supported catalyst
作者: 薛丁維
Hsueh, Ting-Wei
關鍵字: Chemical vapor deposition
化學氣相沉積法
impregnation
polyol method
cabon nanotubes
CO
含浸法
多元醇法
奈米碳管
一氧化碳
出版社: 環境工程學系所
引用: Appleby,A.,Folkes,J.F.R.,Fuel Cell Handbook,Van NostrandReinhold,New York,(1989.) Arsenilevic,Z.L.,Grbic,B.V.,Grbavcic,Z.,Dradic,B.N.andTerlecki-Barivcevic, A.V.,“Ethylene Oxide Removal in Combined Sorbent/Catalyst System.” Chemical Engineering Science 54, pp.1519-1524(1999) Auer,E.,Freund,A.,Pietsch,J.and Tacke, T.,“Carbons as Supports for Industrial Precious Metal Catalysts.”,Applied Catalysis A:General, Vol.173, pp.259-271 (1998) Barresi,A.A.,Baldi,G.,“Deep Catalytic Oxidation of Volatile Aromatic Hydrocarbon Mixture”,Industrial Engineering Chemical Research, Vol.33, pp.2964-2974(1994). Baker,R.T.K.“Catalytic growth of carbon filament”,Vol.27,pp.315(1989) Burgos,N.,Paulis,M.,Antxustegi,M.M.,Montes,M.,“Deep oxidation of VOCs mixtures with platinum supported on Al2O3/Al monoliths”,Applied Catalysis B: Environmental ,Vol 38,pp.251-258(2002) Carotenuto,G.,“Synthesis and characterization of poly(N-vinylpyrrolidone) filled by monodispersed silver clusters with controlled size”,Applied Organometallic chemistry,Vol.15,pp.344-351(2001) Chang,Y.M.,“Effect of Incineration Temperature on CO Emission during Sludge Incineration in CFBI”,J.of the Chin.Environ.Eng.,Vol.4,No.4, pp.267~274,(1994) Chen,C.L.,“Study on Reaction Kinetics of Volatile Organics by Catalytic Incineration Using Pt Catalyst”M.S.Thesis, Graduate Inst. Of Environ. Eng.,National Sun Yet Sen Univ., Kaohusing, Taiwan, R.O.C.(1993). Cheng,L.S.,Yang,R.T.,and Chen,N.,“Iron Oxide and Chromia Supported on Titania-Pillared Clay for Selective Catalytic Reduction of Nitric Oxide with Ammonia”Journal of Catalysis,Vol 164,pp.70-81(1996) Chen,C.M.,Jehng,J.M.,Applied Catalysis A :General,Vol.267,pp.103 (2004). Collins,P.G.and Avouris,P.“Nanotubes for Electronics”, ScientificAmerican, pp.62-69 (2000) Chu,H.and Lee,W.T.,“ The Effect of Sulfur Poisoning of Dimethy Disulfide on the Catalytic Incineration over Pt-Al2O3 Catalyst ”The Sci. of the Total environ,Vol.209,pp.217-224(1998) Chu,W.and Windawi,H.,“Control VOCs via Catalytic Oxidation”, Chemical Engineering Progress,Vol.92,pp.37-43,March,(1996) Dresseelhaus,M.S.,Dresseelhaus,G. and Saito,R. ,Physics of carbon nanotubes, Carbon,Vol. 33,pp.883 (1995) Farrauto,R.J.,Bartholomew ,C.H.,1997.Fundamentals of Industrial Catalytic Processes.Blackie,Chapman & Hall,London Forment,G.F. and Bischoff,K.B.editors,“Chemical reactor analysis and design”, John Wiley & Sons, Second edition (1990) Gai,P.L.,Kourtakis,K.and Ziemecki,S.,“In site real time environmental high resolution microscopy of nanometer size novel xerogel catalysts for hydrogenation reactions in nylon 6,6.”Microscopy and Microanalysis (Springer),(2000.) Garbowski,E.,Labalme,V.,Benhamon,N.,Guillhaume,N.,Primet,M.,“Modifications of Pt/alumina combustion catalysts by barium addition.I.Properties of fresh catalysts”.Applied Catalysis A,General,Vol66,pp.351–366(1995). Garetto,T.F.and Apesteguia,C.R.“Oxidative catalytic removal of hydrocarbons over Pt/Al2O3 catalysts”Catal.Today,Vol 62,pp.189-199(2000) Heck,R.M.,and Farrauto,R.J.,“Catalytic Air pollution Control”,Van Nostrand Reinhold,New York(1995) Hirai,H.,Nakao.,Y.and Toshima,N.,“Preparation of colloidal Transition Metals in Polymers by Reduction with Alcohols or Ethers”,Journal of macromolecular sciene part a :chemistry,Vol.13,pp.727-750(1979). Hirata, Atsushi; Yoshioka, Nobuaki. “Sliding friction properties of carbon nanotube coatings deposited by microwave plasma chemical vapor deposition”.Tribology International Volume: 37, Issue: 11-12, November - December, pp. 893-898(2004) Iijima,S.“Helical microtubules of graphitic carbon”, Nature Vol.354,pp.56-58 (1991) Kapteijn,F.,Singoredjo,L.,Vandriel,M.,Andreini,A.,Moulijn,J.A.,Ramis,G.,and Busca,G.“Alumina-Supported Manganese Oxide Catalysts:II.Surface Characterization and Adsorption of Ammonia and Nitric Oxide”,Journal of Catalysis,Vol 150,pp105-116(1994). Kim,Sang Chai,“The catalytic oxidation of aromatic hydrocarbons over supported metal oxide”,Journal of Hazardous Materials,Vol 91, pp.285-299(2002) Klinke,C.,Bonard,J.M.,and Kern,K.“Comparative study of thecatalytic growth of patterned carbon nanotube films”,SurfaceScience.Vol.492,pp.195-201 (2001) Kobayashi,T.,Yamada,T.and Kayano,K.,“Effect of Basic Metal Additives on NOx Redction Property of Pd-Based Three-Way Catalyst”Applied Catalysis B:Environmental,Vol.30,pp.287-292,(2001) Kurihara,L.K.,Chow,G.M.and Schoen,P.E.,“Nanocrystalline metallic powders and films produced by the polyol method.”NanoStructured Materials,Vol 5, pp.607-613 (1995) Lahousse,C.;Bernier,A.;Grange,P.;Delmon,B.;Papaefthimiou,P.;Ioannides,T.; Verykios,X.“Evaluation of γ-MnO2 as a VOCs Removal Catalyst: Comparison with a Noble Metal Catalyst”Journal of Catalysis,Vol 178, pp.214-225 (1998) Li,Guohui,Hu,Linjie,Josephine M.Hill,“Comparison of reducibility and stability of alumina-supported Ni catalysts prepared by impregnation and co-precipitation”,Applied Catalysis A,General,Vol 301,pp.16-24(2006) Lojewska,J.,Kolodziej,A.,Zak,J.,and Stoch,J.,“Pd/Pt promoted Co3O4 catalysts for VOCs combustion. Preparation of active catalyst on metallic carrier”, Catalysis Today,Vol 105,pp.655-661 (2005) Lyubovski,M.,Pfefferle,L.,“Complete methane oxidation over Pd catalyst supported on a-alumina. Influence of temperature and oxygen pressure on the catalyst activity”,Catal.Today,Vol 47,pp.29–44(1999). Miyazaki,A.,Balint,I.,Aika,K.,and Nakano,Y.,“Preparation of Ru nanoparticles supported on γ-Al2O3 and its novel catalytic activity for ammonia synthesis.”Journal of Catalysis,Vol 204,364-371 (2001). Peña O’Shea,V.A.de la, Álvarez-Galván,M.C.,Fierro,J.L.G.,and Arias,P.L., “Influence of feed composition on the activity of Mn and PdMn/Al2O3 catalysts for combustion of formaldehyde/methanol”,Applied catalysis B: Environmental,Vol 57,pp.191-199(2005) Rodr íguez-Reinoso, F., “The role of carbon materials in heterogeneous catalysis”, Carbon, Vol.36,pp.159-175(1998) Satterfield,C.N.,“Heterogenous Catalysis in Practice”,McGraw-Hill,New York,(1980) Satterfield,C.N.,“Heterogeneous Catalysis in Industrial Practice”2nd ed. McGraw Hill,New York(1991) Smith,J.M.,“Chemical Engineering Kinetics”3rd ed. McGraw Hill, New York NY(1981) Suess,M.J.,Grefen,K.and Reinisch,D.W.,Ambient Air pulltants from Industrial Source- a Reference Handbook,Elsevier,(1985) Suhonen,S.,Valden,M.,Hietikko,M.,Lairinen,R.,Savimaki,A.andHarkonen,M., ”Effect of Ce-Zr mixed oxides on the chemical state of Rh in alumina supported automotive exhaust catalysts studied by XPS and XRD” Applied Catalysis A:General,Vol.218,pp.151-160,(2001) Tichenor,B.A.and Palazzolo,M.A.,“Destruction of volatile organic compounds vis catalytic incineration”,Environ. Prog.,Vol.6,pp.172-176, (1987) Tzeng, Y.; Chen, Y.; Sathitsuksanoh, N.; Liu, C.. “Electrochemical behaviors and hydration properties of multi-wall carbon nanotube coated electrodes in water”. Diamond and Related Materials Volume: 13, Issue: 4-8, April - August, pp1281-1286(2004) Wang,S.and Lu,G.Q.“Effects of Acidic Treatments on the Pore and Surface Properties of Ni Catalyst Supported on Activated Carbon.”Carbon, Vol 36(3), pp.283-292 (1998). Weihulst,H.Z.G.,“Catalytic Combustion of n-pentane on Pt Supported on Soild Superacids”,Applied Catalysis B:Environmental,Vol.17,pp.37-42, (1998) Wu, J. C.-S., Lin, Z.-A., Tsai, F.-M., Pan, J.-W., “Low-temperature complete oxidation of BTX on Pt/activated carbon catalysts ”Catalysis Today, Vol.63, pp.419-426(2000) Yacaman,M.J.,Yoshida,M.M.,Rendon,Santiesteban,J.G.,Applied Physics -Letters Vol.62,pp.202,(1993.) Yahachi Saito ,Sashiro Uemura,‘‘Field emission from carbon nanotubes and its application to electron sources’’,Carbon,Vol.38,pp.169 (2000) Yang,R.T.,Li,W.B.,“Ion-Exchanged Pillared Clays:A New Class of Catalysts for Selective Catalytic Reduction of NO by Hydrocarbons and by Ammonia”,Journal of Catalysis,Vol 155, pp.414-417(1995) Yang,R.T.,Tharappiwattananon,N.,Long,R.Q.,“Ion-exchanged pillared clays for selective catalytic reduction of NO by ethylene in the presence of oxygen”Applied Catalysis B:Environmental,Vol 19,pp.289-304(1998) 王世敏,許祖勛,傅晶, “奈米材料原理與製備”,五南圖書出版股份有限公司,台北 (2004) 成會明編,“奈米碳管製備、結構、物性及應用”,化學工業出版社,(2002) 李定粵,觸媒的原理與應用,國立編譯館,台北市(1991) 李明哲,非均勻系觸媒反應的原理與應用,復文書局,台南市(1978) 李秉傑、邱宏明、王奕凱合譯,「非均勻系催化原理與應用」,渤海堂文化有限公司,台北(1988) 朱小蓉,陳郁文,“工業廢氣特殊處理技術”,化工資訊,第66-78 頁,(1992) 朱信,曾庭科《科學發展》,387期,6~11頁(2005) 林昇佃、林修正,金屬觸媒之特性與應用,化工技術第二卷第三期,(1994) 林宛青,奈米科技簡介及產業應用課程講義,(2003) 林賜岱, 直接甲醇燃料電池陽極反應機制之研究, 國立台灣科技大學化工系碩士論文, (2002)。 林建宏,“銅觸媒活性中心之研究”,國立中山大學化學研究所,碩士論文,(1990) 吳榮宗, “工業觸媒概論” ,國興出版社,新竹 (1995)。 吳玟玲,“控制揮發性有機物(VOCs)的熱焚化與觸媒焚化技術”,工業 污染防治第39期,第139-153頁,(1991) 柯子星、朱信、曾庭科 “以Pt/γ-Al2O3觸媒焚化處理甲基異丁基酮之研究” 第十六屆空氣污染控制技術研討會論文集,高雄,(2001)。 許漢軒、朱信、曾庭科、柯俊德 “ 以Mn2O3/ Al2O3觸媒焚化處理三氯乙烯之研究 ’’ 第十七屆空氣污染控制技術研討會論文集,第262-267 頁,(2000) 陳俐穎,“多元醇法製備奈米養化金屬觸媒於低溫下催化VOCs之研究” 國 立中興大學環境工程研究所,碩士論文,(2006) 陳淨修,楊慶熙,”台灣地區有害空氣污染物管制”,工業污染防治,第52卷,pp.1-35,(1994)。 梁煜申,“鈀觸媒處理焚化廢氣中CO、NO之動力研究” 國立中興大學環 境工程研究所,碩士論文,(2003) 黃新中,“流體化鈀觸媒氧化處理焚化廢氣中有機物之研究”, 國立中興大學環境工程研究所碩士論文,(2001) 黃世忭,“以化學氣相沉積法定向成長奈米碳管之研究” 淡江大學機械 與機電工程研究所,碩士論文,(2003) 楊文毅,“鈀觸媒氧化焚化廢氣中有機物之研究”,國立中興大學環工系,碩士論文,(2000) 葉家伶,“以三向觸媒同時處理焚化廢氣中有機污染物、CO 及NOX之研究” 國立中興大學環境工程研究所,碩士論文,(2002) 歐陽華,“鈰鋯複合氧化物對一氧化碳氧化影響之研究” 逢甲大學紡織工 程研究所,碩士論文,(2004) 劉家鈞,我國與他國環保標準比較,環境衛生報告,11 (1992) 鄭乙任,“ 影響觸媒焚化之主要因素及操作維護注意事項之探討”,工業污染防治 報導,第123期,第8-9頁,(1999) 鄭漢聰,“活性碳擔持觸媒對NO去除之研究” 國立中興大學環境工程研究所,碩士論文,(2005) 鄭耀宗, 徐耀昇, 燃料電池技術進展的現況分析, 節約能源論文發表會論文專輯, pp.409-422,(1999.) 盧敏彥, 黃俊傑, 化工技術, 第十卷,第六期(2000) 樊邦堂,環境工程化學,科技圖書股份有限公司,台北(1994) 環保署,“空氣污染對人體健康的影響”,統一編號34022780298 環保署,全力推動機車二期排放標準,環境衛生報導,40 (1992) 顧順榮,鍾昀泰,張木彬 “台灣地區都市垃圾焚化灰分中重金屬濃度及TCLP 溶出之評估 ’’ 第十屆廢棄物處理技術研討會論文集,第271-279 頁,(1995) 閻子峰,“奈米催化技術” ,五南圖書出版股份有限公司,,台北,(2004)。
摘要: 近年來由於環境保護意識高漲,許多以前不被重視的環境污染問題都再一次被提出,其中以空氣污染問題最為嚴重。而造成空氣污染的元兇大都是因為石化燃料的不完全燃燒,所排放的污染物包括了碳氫化合物與一氧化碳等,在所有空氣污染物之中,一氧化碳(CO)的排放量最多、污染源分佈最廣,對人體健康,環境的傷害都有相當大的影響。 奈米碳管擁有良好的物理及化學特性,用來製備奈米碳管金屬觸媒可以利用奈米碳管良好的分散性,增加金屬觸媒與一氧化碳的接觸反應,並獲得大小較平均的金屬活性相。因此,本研究先選用銅、鈷、鐵、鎳並利用化學氣相沉積法(chemical vapor deposition)來製備奈米碳管(cabon nanotubes),分別利用含浸法與多元醇法來製備之奈米碳管金屬銅觸媒,並在相同的空間速度下,以一氧化碳為目標污染物進行實驗探討,以及利用XRPD、FESEM等技術分析金屬觸媒的特性與大小。 實驗結果發現,利用化學氣相沉積法時,使用鐵金屬為奈米碳管之製備觸媒的產率最高約100%。尋找一個合適的空間速度方面中依實驗結果發現最佳的範圍在1.56*104–3.12*104 hr-1之間實驗結果顯示含浸法所製備出來的奈米碳管金屬銅觸媒比用多元醇法製備出來的觸媒尺寸較小,使在進行一氧化碳催化時會有很好的效果。由研究結果發現,含浸法與多元醇法所製備出奈米碳管金屬銅觸媒對一氧化碳的催化有不錯的效果,其中含浸法製備出的金屬活性相,尺寸較小去除效率較高,可以成功去除一氧化碳。
There have been many topics discussed about environmental pollution and these years there has been a rising concern about environmental protection. At present, air pollution is one of the most popular and serious problems caused for environmental damage. The principal factor causing air pollution is from incomplete combustion of petroleum fuels. These discharges the pollutants include hydrocarbons and carbon monoxide (CO). Of all the air pollutants, carbon monoxide is by far the most abundant and damaging pollutant to the human body, not to mention the environment. Carbon nanotubes is relatively new material used as catalyst support in the oxidation of CO due to its good physicals and chemical characteristics. Carbon nanotubes can enhance the disffusion of active site during the catalyst preparation. In this study, a carbon nanotube (CNT) was used as catalyst support loading with transition metal cobalt (Co) for CO oxidation at low temperature. For this, first we chose four different catalysts namely, copper, cobalt, iron, and nickel to prepare cabon nanotubes by chemical vapor deposition method. Second, the carbon nanotube supported copper catalysts were prepared with impregnation method and the polyols process. Catalyst properties were analyzed by X-ray powder diffractometer (XRD) and Field Emission Scanning Electron Microscope (FESEM). The experiment results discovered that the yield of carbon nanontube by iron catalyst with chemical vapor deposition was approximately 100%. According to the experimental result, the best space velocity was found in the range of in between 1.56*104-3.12*104 hr-1. The experimental result showed that the active phase on the catalyst preparation with impregnation method was smaller than polyol process, and smaller active phase showed the good performance on CO oxidation.
URI: http://hdl.handle.net/11455/5118
其他識別: U0005-0702200703020800
文章連結: http://www.airitilibrary.com/Publication/alDetailedMesh1?DocID=U0005-0702200703020800
Appears in Collections:環境工程學系所

文件中的檔案:

取得全文請前往華藝線上圖書館



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.