Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/5130
標題: 以微生物組成探討厭氧醱酵系統之產氫效能
The Effect of Microbial Community on Anaerobic Hydrogen Producing Efficiency
作者: 鄭如琇
Cheng, Lu-Hsiu
關鍵字: 厭氧產氫
Clostridium
Klebsiella
PCR
DGGE
anaerobic hydrogen
Clostridium
Klebsiella
PCR
DGGE
出版社: 環境工程學系所
引用: 余憲忠 (2005) 以流式細胞儀偵測厭氧產氫醱酵系統中微生物產氫活性. 中興大學 生命科學所. 碩士論文. 吳石乙, 林奇賢, 黃俊榮, 許秉叡, 林棋能, 和張嘉修 (2005) 崩潰型生物可分解塑 膠生物產氫可行性評估. 第三十屆廢水處理技術研討會論文集. 吳耿東, and 李宏台 (2004) 生質能源. 科學發展. 李安盛 (2004) 生物暗醱酵產氫. 逢甲大學化學工程系研究所碩士論文. 李國興, 黃郁欣, 曾國瑞, 尹浚任, 林屏杰, 和張嘉修 (2005) 以攪拌式反應器進行 連續式醱酵產氫之操作策略探討. 第三十屆廢水處理技術研討會論文集. 李國興, 呂順吉, 蔡孟倫, 羅泳中, 羅泳勝, 吳季芳, 陳惠莉, 黃建福, 葉茂松, 曾 姿錦, 林屏杰, 和張嘉修 (2003) 以擔體誘發式顆粒污泥床進行厭氧醱酵產 氫. 第八屆生化研討會論文集. 林明正 (2000) CSTR 厭氧產氫反應槽之啟動及操作. 逢甲大學土木及水利工程研 究所. 碩士論文. 林祺能 (2002) 固定化細胞產氫Hydrogen Production with Immobilized Cells. 逢甲 大學化學工程學系. 碩士論文. 林徽鳴, 曾豐祥, 白明德, 曾怡禎, 黃承泰, 和鄭幸雄 (2005) 利用分子生物方法分 析厭氧發酵反應槽之產氫菌. 第三十屆廢水處理技術研討會論文集. 張嘉修, 呂維斌, 羅泳勝, 陳文明, 和李國興 (2005) 本土產氫菌株Clostridium butyricum CGS2 之連續發酵產氫. 第三十屆廢水處理技術研討會論文集. 許景富 (2003) Clostridium butylicum & Clostridium thermocellum 分解纖維素產氫之 特性分析. 高雄第一科技大學環境與安全衛生工程所. 碩士論文. 陳欣微 (2005) 完全混合厭氧發酵產氫系統在不同操作條件下之菌群結構分析. 國 立中興大學環境工程研究所. 碩士論文. 陳國誠 (1998) 微生物固定化技術在廢水處理的應用. 工業污染防治, pp. 1-23. 曾姿錦, 陳文明, 和張嘉修 (2004) 以兼性厭氧菌Klebsiella sp.進行醱酵產氫. 第 二十九屆廢水處理技術研討會論文集. 黃俊霖 (2001) 以分子生物技術探討厭氧生物產氫程序之菌群結構. 中央大學環境 工程研究所. 碩士論文. 109 廖張逢源, 鐘椀亭, 和林秋裕 (2005) 污水污泥菌種產氫活性之探討. In 第三十屆 廢水處理技術研討會論文集. 李國興 (2004) 以顆粒污泥程序進行高速厭氧醱酵產氫. 逢甲大學化學工程系.博 士論文. 蔡文城 (1984) 應用臨床微生物診斷學, p. 475. 蔡夢倫 (2004) CSTR 系統醱酵產氫之研究溫度效應與效能提升策略之探討. 逢甲 大學化學工程系研究所. 碩士論文. 鄭幸雄, 白明德, 和趙禹杰 (2003) 厭氧產氫菌分解高分子碳水化合物及peptone 之產氫機制. 第二十八屆廢水處理技術研討會論文集. 鄭幸雄, 李學霖, 趙禹杰, 和黃良銘 (2005) 利用澱粉及蛋白腖複合基質進行厭氧 生物產氫程序. 第三十屆廢水處理技術研討會論文集. 賴欣宏 (2002) 不同環境條件下完全混合式反應槽厭氧產氫效率及反應力學之比 較研究. 台中師範學院環境教育研究所. 碩士論文. 大紀元時報(2005) IEA:氫用量增世紀中可減一半溫室氣體排量. http://www.epochtimes.com/b5/5/12/2/n1140171.htm 粟德金(2006) 美國石油時代的終結. http://www.washingtonobserver.org/document.cfm?documentid=1233&charid=2 經濟部能源局(2006) 再生能源. http://www.taipower.com.tw/left_bar/power_life/power_development_plan/Rege neration_energy.htm Ahn, Y., Kim, E.J., Oh, Y.K., Park, S., Webster, G., and Weightman, A.J. (2005) Biofilm Microbial Community of a Thermophilic Trickling Biofilter Used for Continuous Biohydrogen Production. FEMS Microbiology Letters 249: 31-38. Akarsubasi, A.T., Ince, O., Kirdar, B., Oz, N.A., Orhon, D., Curtis, T.P., Head, I.M., and Ince, B.K. (2005) Effect of Wastewater Composition on Archaeal Population Diversity. Water Research 39: 1576-1584. Amann, R.I., Krumholz, L., and Stahl, D.A. (1990) Fluorescent-Oligonucleotide Probing of Whole Cells for Determinative, Phylogenetic, and Environmental Studies in Microbiology. Journal of Bacteriology 172: 762-770. Amann, R.I., Ludwig, W., and Schleifer, K.H. (1995) Phylogenetic Identification and in Situ Detection of Individual Microbial Cells without Cultivation. Microbiol. Rev. Mar. 59: 143-169. 110 Arik, T., Gunduz, U., Yucel, M., Turker, L., Sediroglu, V., and Eroglu, I. (1996) Photoproduction of Hydrogen by Rhodobacter sphaeroides Ou001. In Proceedings of the 11th World Hydrogen Energy Conference Viroglu TN, W.C., Baselt JP, Kreysa G, (ed). Germany Frankfurt: Scon & Wetzel GmbH, p. 2417–2426. Aristidou, A., and Penttila, M. (2000) Metabolic Engineering Applications to Renewable Resource Utilization. Current Opinion in Biotechnology 11: 187-198. Batstone, D.J., Keller, J., and Blackall, L.L. (2004) The Influence of Substrate Kinetics on the Microbial Community Structure in Granular Anerobic Biomass. Water Research 38: 1390-1404. Brock, T.D., Madigan, M.T., Martiko, J.M., and Parker, J. (1994) Biology of Microorganisms: Pretice-Hall. Burrel, P.C., O''Sullivan, C., Song, H., Clarke, W.P., and Blackall, L.L. (2004) Identification, Detection,and Spatial Resolution of Clostridium Populations Responsible for Cellulose Degradation in a Methanogenic Landfill Leachate Bioreactor. Appl Environ Microbiol. 70: 2414-2419. Cato, E.P., Moore, W.L., and Finegold (1986) Genus Clostridium. In Bergey''s Manual of Systematic Bacteriology, pp. 1141-1200. Chen, C.C., Lin, C.Y., and Chang, J.S. (2001) Kinetics of Hydrogen Production with Continuous Anaerobic Cultures Utilizing Sucrose as the Limiting Substrate. Applied Microbiology and Biotechnology 57: 56-64. Chen, X., Sun, Y., Xiu, Z., Li, X., and Zhang, D. (2006) Stoichiometric Analysis of Biological Hydrogen Production by Fermentative Bacteria. International Journal of Hydrogen Energy 31: 539-549. Collins, M.D., Lawson, P.A., Willems, A., Cordoba, J.J., Fernandez-Garayzabal, J., Garcia, P., Cai, J., Hippe, H., and Farrow, J.A. (1994) The Phylogeny of the Genus Clostridium:Proposal of Five New Genera and Eleven New Species Combinations. Int. J .Syst.Bacteriol. 44: 812-826. Czuppon, T.A., Knez , S.A., and Newsome, D.S. (1996) Othmer Encyclopedia of Chemical Technology. New York: Wiley. Cheng, K.K., Liu, H.J., and Liu, D.H. (2005) Multiple Growth Inhibition of Klebsiella pneumoniae in 1,3-Propanediol Fermentation. Biotechnology Letters 27: 19-22. Chang, F.Y., and Lin, C.Y. (2004) Biohydrogen production using an up-flow anaerobic sludge blanket reactor. International Journal of Hydrogen Energy 29: 33-39. 111 Chang, J.S., Lee, K.S., and Lin, P.J. (2002) Biohydrogen production with fixed-bed bioreactors. International Journal of Hydrogen Energy 27: 1167-1174. Daims, H., A. Bruhl, R. Amann, K. H. Schleifer, and M. Wagner. (1999) The Domain-Specific Probe Eub338 Is Insufficient for the Detection of All Bacteria: Development and Evaluation of a More Comprehensive Probe Set. Systematic and Applied Microbiology 22: 434–444. Das, D., and Veziroglu, T.N. (2001) Hydrogen Production by Biological Processes: A Survey of Literature. International Journal of Hydrogen Energy 26: 13. DeLong, E.F., Wickham, G.S., and Pace, N.R. (1989) Phylogenetic Stain:Ribosomal rRNA-Based Probes for the Indentification of Single Cells. Science 243: 1360-1363. Diaz, E., Amils, R., and Sanz, J.L. (2003) Molecular Ecology of Anaerobic Granular Sludge Grown at Different Conditions. Water Science and Technology 48: 57-64. Dorigo, U., Volatier, L., and Humbert, J.-F. (2005) Molecular Approaches to the Assessment of Biodiversity in Aquatic Micorbial Communities. Water Research In Press,Corrected Proof. Ezeji, T.C., Qureshi, N., and Blaschek, H.P. (2005) Continuous Butanol Fermentation and Feed Starch Retrogradation: Butanol Fermentation Sustainability Using Clostridium beijerinckii Ba101. Journal of Biotechnology 115: 179-181. Fang, H., Zhang, T., and Liu, H. (2002) Microbial Diversity of a Mesophilic Hydrogen-Producing Sludge. Applied Microbiology and Biotechnology 58: 112. Fascetti, E., and Todini, O. (1995) Rhodobacter sphaeroides RV Cultivation and Hydrogen Production in a One-and Two-Stage Chemostat. Applied Microbiology and Biotechnology 44: 300. Ferris, M.J., and Ward, D.M. (1997) Seasonal Distributions of Dominant 16S rRNA-Defined Populations in a Hot Spring Microbial Mat Examinant by Denaturing Gradient Gel Electrophoresis. Appl. Environ. Microbiol. 63: 1375-1381. Flickinger, M. (1980) Current Biological Research in Conversion of Cellulosic Carbohydrates into Liquid Fluels:How Far Have We Come. Biotechnol Bioengne 22: 27-48. Franks, A.H., Harmsen, H.J., Raangs, G.C., Jansen, G.J., Schut, F., and Welling, G.W. (1998) Variations of Bacterial Populations in Human Feces Measured by Fluorescent in Situ Hybridization with Group-Specific 16S rRNA-Targeted Oligonucleotide Probes. Appl. Environ. Microbiol. 64: 3336-3345. 112 Fang, H.H.P., Liu, H., and Zhang, T. (2002) Characterization of a hydrogen-producing granular sludge. Biotechnol Bioengne 78: 44-52. Garcia, J.L., Patel, B.K.C., and Ollivier, B. (2000) Taxonomic, Phylogenetic, and Ecological Diversity of Methanogenic Archaea. Anaerobe 6: 205-226. Girbal, L., Croux, C., Vasconcelos, I., and Soucaille, P. (1995) Regulation of Metabolic Shifts in Clostridium acetobutylicum ATCC 824. FEMS Microbiology Reviews 17: 287-297. Gonzalez-Gil, G., Lens, P.N.L., Van Aelst, A., Van As, H., Versprille, A.I., and Lettinga, G. (2001) Cluster Structure of Anaerobic Aggregates of an Expanded Granular Sludge Bed Reactor. Appl. Environ. Microbiol. 67: 3683-3692. Gottschalk, G. (1986) Bacterial Metabolism New York: Springer-Verlag. Gray, C.T., and Gest, H. (1965) Biological Formation of Molecular Hydrogen. Science 148: 186-192. Grotenhuis, J.T.C., Smit, M., Plugge, C.M., Yuansheng, X., van Lammeren, A.A.M., Stams, A.J.M., and Zehnder, A.J.B. (1991) Bacterial Composition and Structure of Granular Sludge Adapted to Different Substrates. Appl. Environ. Microbiol. 57: 1942-1949. Guadalupe Piñar, Karin Kovárová, Thomas Egli, and Ramos, J.L. (1998) Influence of Carbon Source on Nitrate Removal by Nitrate-Tolerant Klebsiella oxytoca CECT 4460 in Batch and Chemostat Cultures. Appl. Environ. Microbiol. 64: 2970-2976. Hallenbeck, P.C., and Benemann, J.R. (2002) Biological Hydrogen Production; Fundamentals and Limiting Processes. International Journal of Hydrogen Energy 27: 1185-1193. Hawkes, F.R., Dinsdale, R., Hawkes, D.L., and Hussy, I. (2002) Sustainable Fermentative Hydrogen Production: Challenges for Process Optimisation. International Journal of Hydrogen Energy 27: 1339. Hulshoff Pol, L.W., de Castro Lopes, S.I., Lettinga, G., and Lens, P.N.L. (2004) Anaerobic sludge granulation. Water Research 38: 1376-1389. Ingraham, J.L., Maaloe, O., and Neidhardt, F.C. (1983) Growth of the Bacteria Cell. Sunderland, Massachusetts. Imai, T., Ukita, M., Liu, J., Sekine, M., Nakanishi, H., and Fukagawa, M. (1997) Advanced start up of uasb reactors by adding of water absorbing polymer. Water Science and Technology 36: 399-406. 113 Jones, D.T., and D. R. Woods (1986) Acetone-Butanol Fermentation Revisited. Microbiol. Rev. 50: 484-524. Kataoka, N., Miya, A., and Kiriyama, K. (1997) Studies on Hydrogen Production by Continuous Culture System of Hydrogen-Producing Anaerobic Bacteria. Water Science and Technology 36: 41-47. Kato, S., Shin, H., Zong, J.C., Masaharu, I., and Yasuo, I. (2004) Effective Cellulose Degradation by a Mixed-Culture System Composed of a Cellulolytic Clostridium and Aerobic Non-Cellulolytic Bacteria. FEMS Microbiology Ecology 51: 133-142. Kim, S.H., Han, S.K., and Shin, H.S. (2006) Effect of Substrate Concentration on Hydrogen Production and 16S rRNA-Based Analysis of the Microbial Community in a Continuous Fermenter. Process Biochemistry 41:199-207. Kumar, N., and Das, D. (2001) Continuous hydrogen production by immobilized Enterobacter cloacae IIT-BT 08 using lignocellulosic materials as solid matrices. Enzyme and Microbial Technology 29: 280-287. Kirsten Kusel, Holly C. Pinkart, Harold L. Darke, and Devereux, R. (1999) Acetogenic and Sulfate-Reducing Bacteria Inhabiting the Rhizoplane and Deep Cortex Cells of the Sea Grass Halodule Wrightii. Appl. Environ. Microbiol. 65: 5117-5123. Koskinen, P.E.P., Kaksonen, A.H., and Puhakka, J.A. (2005) Dynamics of Microbial Community During H2-Fermentation from Glucose in Fluidized-Bed Bioreactor, Feng Chia University,Taichung,Taiwan. Kosourov, S., Tsygankov, A., Seibert, M., and Ghirardi, M.L. (2002) Sustained Hydrogen Photoproduction by Chlamydomonas reinhardtii: Effects of Culture Parameters. Biotechnology and Bioengineering 78: 731 - 740. Kumar, A., Jain, S.R., Sharma, C.B., Joshi, A.P., and Kalia, V.C. (1995) Increased Hydrogen Production by Immobilized Microorganisms. World Journal of Microbiology and Biotechnology 11: 156-159. Kim, J.O., Kim, Y.H., Ryu, J.Y., Song, B.K., Kim, I.H., and Yeom, S.H. (2005) Immobilization Methods for Continuous Hydrogen Gas Production Biofilm Formation Versus Granulation. Process Biochemistry 40: 1331-1337. Kawagoshi, Y., Hino, N., Fujimoto, A., Nakao, M., Fujita, Y., Sugimura, S., and Furukawa, K. (2005) Effect of Inoculum Conditioning on Hydrogen Fermentation and pH Effect on Bacterial Community Relevant to Hydrogen Production. Journal of Bioscience and Bioengineering 100: 524-530. Laurence Girbal, C.C., Isabel Vasconcelos and Philippe Soucaille (1995) Regulation of Metabolic Shifts in Clostridium acetobutylicum ATCC 824. FEMS Microbiology Reviews 17: 287-297. 114 Lay, J.J. (2002) Biohydrogen Generation by Mesophilic Anaerobic Fermentation of Microcrystalline Cellulose. Biotechnology and Bioengineering 74: 280 - 287. Le Bourhis, A.G., Saunier, K., Dore, J., Carlier, J.P., Chamba, J.F., Popoff, M.R., and Tholozan, J.L. (2005) Development and Validation of PCR Primers to Assess the Diversity of Clostridium Spp. In Cheese by Temporal Temperature Gradient Gel Electrophoresis. Appl. Environ. Microbiol. 71: 29-38. Lens, P.N.L., De Beer, D., Cronenberg, C.C.H., Houwen, F.P., Ottengraf, S.P.P., and Verstraete, W.H. (1993) Heterogeneous Distribution of Microbial Activity in Methanogenic Aggregates: pH and Glucose Microprofiles. Appl. Environ. Microbiol. 59: 3803-3815. Lettinga, G., Velsen, A.F.M., Hobma, S.W., Zeeuw, W., and Klapwijk, A. (1980) Use of the Upflow Sludge Using Activated-Carbon Supported Packed-Bed Biological Wastewater Treatment. Biotechnol Bioengne 22: 699-734. Lee, K.S., Lo, Y.C., Lin, P.J., and Chang, J.S. (2003) H2 production with anaerobic sludge using activated-carbon supported packed-bed bioreactors. Biotechnol Lett 25: 133-138. Lee, K.S., Wu, J.F., Lo, Y.S., Lo, Y.C., Lin, P.J., and Chang, J.S. (2004) Anaerobic hydrogen production with an efficient carrier-induced granular sludge bed bioreactor. Biotechnol Bioengne 87: 648-657. Levin, D.B., Pitt, L., and Murray, L. (2004) Biohydrogen Production: Prospects and Limitations to Practical Application. International Journal of Hydrogen Energy 29: 173-185. Lin, C.Y., and Chang, R.C. (1999) Hydrogen Production During the Anaerobic Acidogenic Conversion of Glucose. J. Chem. Technol. Biotechnol 74: 498-500. Lin, C.Y., and Lay, C.H. (2004) Carbon/Nitrogen-Ratio Effect on Fermentative Hydrogen Production by Mixed Microflora. International Journal of Hydrogen Energy 29: 41-45. Lin, C.Y., and Lay, C.H. (2005) A Nutrient Formulation for Fermentative Hydrogen Production Using Anaerobic Sewage Sludge Microflora. International Journal of Hydrogen Energy 30: 285. Lipski, A., Friedrich, U., and Altendorf, K. (2001) Application of rRNA-Targeted Oligonucleotide Probes in Biotechnology. Applied Microbiology and Biotechnology 56: 40-57. Liu, W.T., Mono, T., and Nakamura, K. (1996) Glycogen Accumulating Population and Its Anaerobic Uptake in Anaerobic-Aerobic Activated Substrate Uptake in 115 Anaerobic-Aerobic Activated Sludge without Biological Phosphate Removal. Water Research 30: 75-82. Liu, X., Zhu, Y., and Yang, S.T. (2006) Butyric Acid and Hydrogen Production by Clostridium tyrobutyricum ATCC 25755 and Mutants. Enzyme and Microbial Technology 38: 521-528. Liu, Y., Xu, H.L., Yang, S.F., and Tay, J.H. (2003) Mechanisms and Models for Anaerobic Granulation in Upflow Anaerobic Sludge Blanket Reactor. Water Research 37: 661-673. Lay, J.J., Lee, Y.J., and Noike, T. (1999) Feasibility of Biological Hydrogen Production from Organic Fraction of Municipal Solid Waste. Water Research 33: 2579-2586. MacLeod, F.A., Guiot, S.R., and Costerton, J.W. (1990) Layered Structure of Bacterial Aggregates Produced in an Upflow Anaerobic Sludge Bed and Filter Reactor. Appl. Environ. Microbiol. 56: 1598-1607. Maidak, B., Cole, J., Lilburn, T., Parker, C.J., Saxman, P., Farris, R., Garrity, G., Olsen, G., Schmidt, T., and Tiedje, J. (2001) The Rdp-Ii(Ribosomal Database Project). Nucleic Acid Research 29: 173-174. Manz, W., Amann, R., Ludwig, W., Wagner, M., and Schleifer, K.H. (1992) Phylogenetic Oligodeoxynucleotide Probes for the Major Subclasses of Proteobacteria: Problems and Solutions. Systematic and Applied Microbiology 15: 593-600. McHugh, S., Carton, M., Collins, G., and O''Flaherty, V. (2004) Reactor Performance and Microbial Community Dynamics During Anaerobic Biological Treatment of Wastewaters at 16-37 °C .FEMS Microbiology Ecology 48: 369-378. Meier, H., Amann, R., Ludwig, W., and Schleifer, K.H. (1999) Specific Oligonucleotide Probes for in Situ Detection of a Major Group of Gram-Positive Bacteria with Low DNA G+C Content. Systematic and Applied Microbiology 22: 186. Melis, A., Zhang, L., Forestier, M., Ghirardi, M.L., and Seibert, M. (2000) Sustained Photobiological Hydrogen Gas Production Upon Reversible Inactivation of Oxygen Evolution in the Green Alga Chlamydomonas reinhardtii. Plant Physiol. 122: 127-136. Ni, M., Dennis, D.Y.C.,Leung, M.K.H., and Sumathy, K. (2006) An Overview of Hydrogen Production from Biomass. Fuel Processing Technology 87: 461-472. Meyer, J., and Gagnon, J. (1991) Primary Structure of Hydrogenase I from Clostridium pasteurianum. Biochemistry 30: 9697-9704. Michael, T.M., John, M.M., and Jack, P. (2003) Brock Biology of Microorganisms. 116 Minnan, L., Jinli, H., Xiaobin, W., Huijuan, X., Jinzao, C., Chuannan, L., Fengzhang, Z., and Liangshu, X. (2005) Isolation and Characterization of a High H2-Producing Strain Klebsiella oxytoca HP1 from a Hot Spring. Research in Microbiology 156: 76. Miyake, J., and Kawamura, S. (1987) Efficiency of Light Energy Conversion to Hydrogen by the Photosynthetic Bacterium Rhodobacter sphaeroides. International Journal of Hydrogen Energy 12: 147. Miyake, J., Miyake, M., and Asada, Y. (1999) Biotechnological Hydrogen Production: Research for Efficient Light Energy Conversion. Journal of Biotechnology 70: 89. Montaque, L., Slayton, A., and Lukas, J. (2002) Lignocellulosic Biomass to Ethanol Process Design and Economics Utilizing Co-Current Dilute Acid Prehydrolysis for Corn Stover. NREL Technical Report NREL/TP-510-32438. Morimoto, K., Kimura, T., Sakka, K., and Ohmiya, K. (2005) Overexpression of a Hydrogenase Gene in Clostridium paraputrificum to Enhance Hydrogen Gas Production. FEMS Microbiology Letters 246: 229-234. Muyzer, G., de Waal, E.C., and Uitterlinden, A.G. (1993) Profiling of Complex Microbial Populations by Denaturing Gradient Gel Electrophoresis Analysis of Polymerase Chain Reaction-Amplified Genes Coding for 16S rRNA. Appl. Environ. Microbiol. 59: 695-700. Nandi, R., and Sengupta, S. (1998) Microbial Production of Hydrogenase: An Overview. Critical Reviews in Microbiology 24: 61-84. Nielsen, A.T., Liu, W.T., Filipe, C., Grady, L., Jr., Molin, S., and Stahl, D.A. (1999) Identification of a Novel Group of Bacteria in Sludge from a Deteriorated Biological Phosphorus Removal Reactor. Appl. Environ. Microbiol. 65: 1251-1258. Nakashimada, Y., Rachman, M.A., Kakizono, T., and Nishio, N. (2002) Hydrogen Production of Enterobacter Aerogenes Altered by Extracellular and Intracellular Redox States. International Journal of Hydrogen Energy 27: 1399-1405 Poulsen, L.K., Ballard, G., and Stahl, D.A. (1993) Use of rRNA Fluorescence in Situ Hybridization for Measuring the Activity of Single Cells in Young and Established Biofilms. Appl Environ Microbiol. 59: 1354-1360. Palazzi, E., Fabino, B., and Perego, P. (2000) Process development of continuous hydrogen production by Enterobacter aerogenes in a packed column reactor. Bioprocess Eng 22: 205-213. 117 Ramachandran, R., and Menon, K.R.(1998) An Overview of Industrial Uses of Hydrogen. International Journal of Hydrogen Energy 23: 593. Regan, J.M., Harrington, G.W., and Noguera, D.R. (2002) Ammonia - and Nitrite - Oxidizing Bacterial Communities in a Pilot-Scale Chloraminated Drinking Water Distribution System. Appl. Environ. Microbiol. 68: 73-81. Rood, J.I. (1998) Virulence Genes of Clostridium perfringens. Annual Review of Microbiology 52: 333-360. Rachman, M.A., Nakashimada, Y., Kakizono, T., and Nishio, N. (1998) Hydrogen production with high yield and high evolution rate by self-flocculated cells of Enterobacter aerogenes in a packed-bed reactor. Appl Microbiol Biotechnol 49: 450-454. Saiki, Y., Iwabuchi, C., Katami, A., and Kitagawa, Y. (2002) Microbial Analyses by Fluorescence in Situ Hybridization of Well-Settled Granular Sludge in Brewery Wastewater Treatment Plants. Journal of Bioscience and Bioengineering 93: 601-606. Sekiguchi, Y., Kamagata, Y., Nakamura, K., Ohashi, A., and Harada, H. (1999) Fluorescence in Situ Hybridization Using 16S rRNA-Targeted Oligonucleotides Reveals Localization of Methanogens and Selected Uncultured Bacteria in Mesophilic and Thermophilic Sludge Granules. Appl. Environ. Microbiol. 65: 1280-1288. Shin, H.S., Younb, J.H., and Kim, S.H. (2004) Hydrogen Production from Food Waste in Anaerobic Mesophilic and Thermophilic Acidogenesis. International Journal of Hydrogen Energy 29: 1355-1363. Sleat, R., Mah, R., and Robinson, R. (1984) Isolation and Characterization of an Anaerobic,Cellulolytic Bacterium, Clostridium cellulovorans sp.Nov. Appl. Environ. Microbiol. 48: 88-93. Solomon, B.O., Zeng, A.P., Biebl, H., Schlieker, H., Posten, C., and Deckwer, W.D. (1995) Comparison of the Energentic Efficiencies of Hydrogen and Oxychemicals Formation in Klebsiella pneumoniae and Clostridium butyricum During Anaerobic Growth on Glycerol. Biotechnology 39: 107-117. Stackebrandt, E., and Rainey, F.A. (1997) The Clostridia : Molecular Biology and Pathogenesis. In The Clostridia : Molecular Biology and Pathogenesis. Rood, J.I., McClane, B. A., Songer, J. G. and Titball, R.W. (ed): Academic Press, pp. 3-19. Stahl, D.A., and Amann, R.I. (1991) Development and Application of Nucleic Acid Probes in Bacterial Systematics. In Sequencing and Hybridization Techniques in Bacterial Systematics. E. Stackebrandt, and M. Goodfellow (eds). England: John Wilry and Sons, pp. 205-248. 118 Straus, D.C. (1986) Production of an Extracellular Toxic Complex by Various Strains of Klebsiella pneumoniae. American Society for Microbiology 55: 44-48. Sung, S., Raskin, L., Duangmanee, T., Padmasiri, S., and Simmons, J.J. (2002) Hydrogen Production by Anaerobic Microbial Communities Exposed to Repeated Heat Treatments. Suzuki, Y. (1982) On Hydrogen as Fuel Gas. International Journal of Hydrogen Energy 7: 227-230. Sveshnikov, D.A., Sveshnikova, N.V., Rao, K.K., and Hall, D.O. (1997) Hydrogen Metabolism of Mutant Forms of Anabaena Variabilis in Continuous Cultures and under Nutritional Stress. FEMS Microbiology Letters 147: 297-301 Taguchi, F., Hasegawa, K., Saito-Taki, T., and Hara, K. (1996) Simultaneous Production of Xylanase and Hydrogen Using Xylan in Batch Culture of Clostridium sp. Strain X53. Journal of Fermentation and Bioengineering 81: 178. Tanisho, S., and Ishiwata, Y. (1994) Continuous Hydrogen Production from Molasses by the Bacterium Enterobacter aerogenes. International Journal of Hydrogen Energy 19: 807-812. Thomas, D., Michael, T., John, M., and Jack, P. (1994) Biology of Microorganism. In, pp. 77-80. Tanisho, S., and Ishiwata, Y. (1995) Continuous hydrogen production from molasses by fermentation using urethane foam as a support of flocks. International Journal of Hydrogen Energy 20: 541-545. Ueno, Y., Haruta, S., Ishii, M., and Igarashi, Y. (2001a) Characterization of a Microorganism Isolated from the Effluent of Hydrogen Fermentation by Microflora. Journal of Bioscience and Bioengineering 92: 397-400. Ueno, Y., Haruta, S., Ishii, M., and Igarashi, Y. (2001b) Microbial Community in Anaerobic Hydrogen-Producing Microflora Enriched from Sludge Compost. Applied Microbiology and Biotechnology 57: 555-562. Ueno, Y., Kawai, T., Sato, S., Otsuka, S., and Morimoto, M. (1995) Biological Production of Hydrogen from Cellulose by Natural Anaerobic Microflora. Journal of Fermentation and Bioengineering 79: 395-397. Van Dyke, M.I., and McCarthy, A.J. (2002) Molecular Biological Detection and Characterization of Clostridium Populations in Municipal Landfill Sites. Appl. Environ. Microbiol. 68: 2049-2053. Veziroglu, T.N. (1995) Twenty Years of the Hydrogen Movement 1974-1994. International Journal of Hydrogen Energy 20: 1. 119 Vignais, P.M., Billoud, B., and Meyer, J. (2001) Classification and Phylogeny of Hydrogenases. FEMS Microbiology Reviews 25: 455-501. Vavilin, V.A., Rytow, S.V., and Lokshina, L.Y. (1995) Modelling Hydrogen Partial Pressure Change as a Result of Competition between the Butyric and Propionic Groups of Acidogenic Bacteria. Bioresource Technology 54: 171-177. Wagner, M., Amann, R., Lemmer, H., Manz, W., and Schleifer, K.H. (1994) Probing Activated Sludge with Fluorescently Labeled rRNA Targeted Oligonucleotides. Water Science and Technology 29: 15 - 23. Wallner, G., Amann, R., and Beisker, W. (1993) Optimizing Fluorescent in Situ Hybridization with rRNA-Targeted Oligonucleotide Probes for Flow Cytometric Identification of Microorganisms. Cytometry 14: 136 - 143. Woese, C.R. (1978) Bacterial Evolution. Micribology Review 51: 211-271. Wooley, H., and Galvez, A. (1999) Lignocellulosic Biomass to Ethanol Process Design and Economics Utilizing Co-Current Dilute Acid Prehydrolysis and Enzymatic Hydrolysis Current and Futuristic Scenarios. NREL Technical Report NREL/TP-580-26157. Wu, S.Y., Hung, C.H., Lin, C.N., Chen, H.W., Lee, A.S., and Chang, J.S. (2006) Fermentative Hydrogen Production and Bacterial Community Structure in High-Rate Anaerobic Bioreactors Containing Silicone-Immobilized and Self-Flocculated Sludge. Biotechnology and Bioengineering 93: 934-946. Wu, S.Y., Lin, C.N., and Chang, J.S. (2003) Hydrogen production with immobilized sewage sludge in three-phase fluidized-bed bioreactors. Biotechno Prog 19: 828-832. Yokoi, H., Maeda, Y., Hirose, J., Hayashi, S., and Takasaki, Y. (1997) H2 Production by Immobilized Cells of Clostridium butyricum on Porous Glass Beads. Biotechnol. Tech. 11: 136-143. Zhang, T., Liu, H., and Fang, H.H.P. (2003) Biohydrogen Production from Starch in Wastewater under Thermophilic Condition. Journal of Environmental Management 69: 149-156. Zhu, Y., and Yang, S.T. (2004) Effect of pH on Metabolic Pathway Shift in Fermentation of Xylose by Clostridium tyrobutyricum. Journal of Biotechnology 110: 143. Zoutberg, G.R., and Frankin, R. (1996) Anaerobic Treatment of Chemical and Brewery Waste Water with a New Type of Anaerobic Reactor; the Biobed Egsb Reactor. Water Science and Technology 34: 375-381.
摘要: 近年來全球化石燃料過度開採,已嚴重造成化石能量短缺的現況,為了遏止 化石燃料的耗盡和燃燒後對環境上的污染,尋求可替代的再生性能源成了重要課 題,在眾多再生能源中就屬生質能最受矚目,其中的生物產氫技術,已被視為未 來新能源開發的重要發展趨勢之一。生物產氫中的厭氧暗醱酵產氫方式因具備不 需額外投入能源、代謝率高、所需反應槽體積小並可同時達到廢棄物再利用等特 性,因而逐漸受到矚目,其中CSTR 厭氧醱酵產氫反應槽已被證實具有良好的產 氫效能。本研究主要以分子生物技術,PCR-DGGE 和FISH 方法探討以不同糖類為 基質並添加不同的固定化細胞擔體,在不同水力停留時間下微生物菌群結構變化 與產氫效率間的關係;其中選擇兩種不同材質的固定化細胞擔體(粉狀活性碳和矽 膠)並分別操作在不同糖類(葡萄糖和木糖)基質下進行厭氧醱酵產氫試驗。 研究結果顯示,以葡萄糖為單一碳源之產氫系統具有最佳產氫效能(HPR=180 H2 L/d/L ,HY=1.54 mol/mol glucose),主要優勢產氫菌以C. butyricum、C. pasteurianum 以及Klebsiella sp.為主;而在木糖為單一碳源之產氫系統,其微生物 多樣性較為複雜,主要優勢產氫菌以多種Clostridium sp.和Klebsiella sp.為主,推 測可能是非產氫菌種與優勢產氫菌彼此間共同競爭基質,導致整體產氫效能不佳 (HPR=36-55 H2 L/d/L,HY=0.5-0.96 mol/mol xylose)。添加活性碳擔體的系統由於 微生物利用基質上較不受質傳上限制,且能快速馴養出自發性顆粒污泥,因此整 體的氫氣產率和氫氣濃度較為穩定;而添加矽膠擔體的系統由於微生物包埋於固 定化細胞擔體內,在極短HRT 下所馴養出的自發性顆粒污泥較不易發生洗出現 象,因此具有較佳的產氫效能。 葡萄糖發酵產氫系統在HRT 0.5 hr 下以C. pasteurianum 為單一Clostridium 族 群存在時具有最佳產氫效果,而存在Clostridium 菌群種類越多反而使產氫情形變 差。葡萄糖發酵系統於不同HRT 下伴隨著特定數量的Streptococcus sp.存在時,有 助於Clostridium 菌屬凝聚能力且能提升產氫效能,但若其數量過多也可能會影響 系統氫氣濃度。木糖發酵產氫系統於不同HRT 下,均無發現Streptococcus sp.的存 在,因此污泥結構較為鬆散,也使產氫效果較差。此外,在葡萄糖與木糖產氫系 統中也可發現Klebsiella 菌群存在,有助消耗系統中氧氣使系統達到絕對厭氧情 形,且隨著其數量上增加使系統氫氣產率提升,但對氫氣濃度並無明顯影響。
The worldwide energy need has been increasing exponentially, which results in the reserves of foil fuel decreasing rapidly. Combustion of fossil fuels have serious negative effects on the environment because of its CO2 emission, many researchers have been working on the exploration of new sustainable energy sources. Biological hydrogen production as one of the renewable resources. Dark Fermentation is an important method of biological hydrogen production due to its high conversion efficiency, less energy intensive, less reactor volume and wastes reused. From previous studies, the high protential of CSTR system in fermentative hydrogen-producing system had been confirmed. In this research, the microbial community structures of CSTR with differential immobilized cell(powered activated carbon and silicone gel immobilized cells) under various carbohydrate(glucose and xylose) by using molecular biological techniques, including PCR-DGGE and FISH were empherized. The relationship between the microbial community structures under various HRT and hydrogen producing efficiency were discussed. Results indicated that glucose fermentation system had the best hydrogen producing efficiency(HPR=180 H2 L/d/L ,HY=1.54 mol/mol glucose) where C. butyricum 、C. pasteurianum and Klebsiella sp. were the predominant hydrogen-producing bacteria. Comparing with glucose fermentation system, the xylose fermentation system had a more complex bacterial structure. Non-hydrogen producing bacteria may compete with hydrogen producing bacteria for substrate, which caused lower hydrogen production performance (HPR=36-55 H2 L/d/L,HY=0.5-0.96 H2 mol/mol xylose) in xylose system. In glucose fermentation system, due to a better mass transfer efficiency between substrate and the H2-producing bacteria which can introduce granular sludge formation at smaller HRT, the PAC immobilized system shows better hydrogen production stability and hydrogen content in the produced biogas. For the SC immobilized system, the H2-producing bacteria were entrapped in the silicone gel, which could form granular sludge and avoid wash out of biomass, resulting in the better H2 performance than the PAC immobilized system at HRT 0.5 h. III In glucose fermentation system, the best hydrogen efficiency occured at HRT 0.5 h when C. pasteurianum existed alone. However, if there were more Clostridium species existed in the system, hydrogen performance would decrease. The results also showed that if there was proper amount of Streptococcus sp. exited in the system, hydrogen efficiency was prompted at various HRT. In xylose fermentation system, Streptococcus sp. was never detected and the structure of the granular sludge was looser than that obtained in glucose fermentation system. Furthermore, Klebsiella sp. were found in both glucose and xylose fermentation system. It was concluded that Klebsiella sp. could help the consumption of oxygen which makes the system to be more anaerobic condition, resulting in the better hydrogen production. However, their present seemed to be independent from hydrogen production.
URI: http://hdl.handle.net/11455/5130
其他識別: U0005-1007200616552800
文章連結: http://www.airitilibrary.com/Publication/alDetailedMesh1?DocID=U0005-1007200616552800
Appears in Collections:環境工程學系所

文件中的檔案:

取得全文請前往華藝線上圖書館

Show full item record
 
TAIR Related Article
 
Citations:


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.