Please use this identifier to cite or link to this item:
DC FieldValueLanguage
dc.contributor.authorLiu, Chun-Tien_US
dc.identifier.citation參考文獻 中文部份 成會明、張勁燕(2004),奈米碳管-奈米研究與應用系列,五南圖書出版股份有限公司,台北。 李元堯(2003),21 世紀尖端材料-奈米碳管,化工技術期刊-奈米材料與應用專輯, Vol. 11,No. 3,140-159. 李鑫濃(2004),奈米碳管合成技術及其污染防治應用,元智大學化學工程學系碩士論文 邱煥宗(2005),奈米碳管吸附水中二價鋅離子之研究,中興大學環境工程系碩士論 胡峰倪(2004),以稻殼製備活性碳及其表面改質對吸附影響之研究,國立台灣科技大學化學工程系碩士論文 劉雅瑄(2001),重金屬Cu2+,Cr3+,Pb2+於活性碳表面特性之研究,國立台灣大學環境工程研究所碩士論文 蔡正國(2005),複合奈米碳管吸附水溶重金屬污染物之應用研究,國立雲林科技大學環境與安全衛生工程系碩士論文 蔡永興(1994),以化學沉降法對重金屬離子共存時之處理控制探討,國立中興大學環境工程系碩士論文 蘇亮誌(2004),鐵氧化物吸附與鐵氧磁體法處理重金屬溶液之研究,國立成功大學化學工程學系碩士論文 英文部分 Adewunmi, C.O., Becker, W., Kuehnast, O., and Oluwole, F. (1996)“Accumulation of copper, lead and cadmium in freshwater snails insouthwestern Nigeria ,” Science of the Total Environment., Vol. 193,69. Anoop Kapoora,T. Viraraghavana, D. Roy Cullimore(1999)., “Removal of heavy metals using the fungus Aspergillus niger,” Bioresource Technology, Vol 70, 95-104 Bandow, S., Rao, A. M., Williams, K. A., Thess, A. Smalley, R. E. Smalley and Eklund, P. C. (1997) “Purification of Single-Wall Carbon Nanotubes by Microfiltration” J. Phys. Chem. B, Vol. 101, 8839. Barrow, N. Y.,J. W. Bowden, A. M. Posener and J. P. Quirk(1980)., “Describing the Effect of Electrolyte on Adsorption of Phosphate by a Variable Charge Surface”,Aust. J. Soil Research, 18, 395-404. Belgin Bayat(2002)., “Comparative study of adsorption properties of Turkish fly ashes the case of nickel,coper and zinc,”J. of Hazardous Materials, Vol B95,251-273. Belin, T. and Epron, F. (2005), “Characterization Methods of Carbon Nanotubes: A Review.” Materials Science and Engineering , B 119, 105-118 Boehm, H.P.(1994), “ Some Aspects of The Surface Chemistry of Carbon Blacks and Other Carbons ”, Carbon, 32, p759. C. Namasivayam, K. Periasamy, “Removal of Nickel from aqueous solution and Nickel plating industry wastewater using an agricultural waste: peanut hulls,” Waste Mgmt., Vol.15, 63-68. Che, G., Lakshmi, B. B., Fisher, E. R., Martin, C. R. (1998) “Carbon nanotubule menbranes for electrochemical energy storage andproduction,” Nature, Vol. 393, 346. Chingombe, P.; Saha, B.; Wakeman, R.J.(2005) “Surface modification and characterization of a coal-based activated carbon.”, Carbon, 43, 3132-3143. Chiron, N., Guilet, R., and Dsydier, E. (2003) “Adsorption of Cu and Pb onto grafted silica: isotherms and kinetic moldes,” Water Research ,Vol. 37, 3079-3086. Chungsying Lu, Huantsung Chiu (2006), “Adsorption of zinc(II) from water with purified carbon nanotubes.” Chemical Engineering Science.,Vol 61, 1138-1145 Chungsying Lu,Huantsung Chiu and Chunti Liu (2006), “Removal of Zinc(II) from Aqueous Solution by Purified Carbon Nanotubes:Kinetics and Equilibrium Studies.”Ind. Eng. Chem. Res.,45,2850-2855 Chungsying Lu.,Chung, Y. L. and Chang, K. F. (2005) “ Adsorption of trihalomethanes from water with carbon nanotubes,” Water Research,Vol. 39, 1183-1189. Collins, P. C., Arnold, M. S., Avouris, P. (2001) “Engineering carbon nanotubes and nanotube circuits using electrical breakdown,”Science , Vol. 292, 706. Cui, J.,Wang, W. P.,You, Y. Z., Liu, C. and Wang, P. (2004) “Functionalization of multiwalled carbon nanotubes by reversible addition fragmentation chain-transfer polymerization” Polymer ,Vol. 45, 8717-8721. Davis, W. M., Erickson, C. L. and Johnston, C. T. (1999) “Quantitative Fourier Transform Infrared Spectroscopic Investigation of Humic Substance Functional Group composition” Chemosphere, Vol. 38, 2913-2928. Dillon, A. C., Jones, K. M.,. Bekkendahl, T. A, Kiang, C. H., Bethune, D.S., Heben, M. J. (1997) “Storage of hydrogen in singlewalled carbon nanotubes,” Nature, Vol. 386, 377. E. Demirbas,M. Kobya b,Oncel b,S. Sencan(2002) “Removal of Ni(II) from aqueous solution by adsorption onto hazelnut shell activated carbon: equilibrium studies”Bioresource Technology, Vol 84.,291-293 Emine Malkoc , Yasar Nuhoglu (2005)., “Investigations of nickel(II) removal from aqueous solutions using tea factory waste,” Journal of Hazardous Materials.,Vol 127, 120-128. Faur-Brasquet, C., Reddad, Z. and Kadirvelu, K. (2002) “Modeling the adsorption of metal ions ( Cu+2, Ni+2, Pb+2 ) onto ACCs using surface complexation models,” Applied Surface Science, Vol. 196, 356-365. Forstner, U. and Wittmann, G.. T.(1981) “Metal Pollution in the Aquatic Environment,” Springer Verlag, New York Furuy, E.G.; Chang, H.T.; Miura, Y. and Noll, K.E.(1997), “A fundamental analysis of the isotherm for the adsorption of phenolic compounds on activatd carbon”Separation and Purification Technology 11, 69-78. Gao, B., Kelinhammes, A., Tang, X. P., Bower, C., Wu, Y., Zhou, O.(1999)“Electrochemical intercalation of single-walled carbon nanotubeswith lithium,” Chem. Phys. Lett., Vol. 307, 153. Hamon, M. A., Hu H., Bhowmik P., Niyogi S., Zhao B., Itkis M. E. and Haddon R. C., (2001) “End-group and defect analysis of soluble single-walled carbon nanotubes.”, Chem. Phys. Lett., Vol347(1-3), 8-12. Haye, K. F. and J. O. Leckie(1987).,“Modeling Ionic Strength Effect on Adsorption at Hydrous Oxides/ Solution Interface”,J. Colloid Interface SCi., 115, 564-572. Haye, K. F. and J. O. Leckie(1988).,“Modeling Ionic Strength Effect on Adsorption at Hydrous Oxides/ Solution Interface”,J. Colloid Interface SCi., 125, 717-726. Ho, Y.S.; McKay, G.(2000) “The kinetics of sorption of divalent metal ions onto sphagnum moss peat.” Wat. Res., Vol.34, 735. Hone, J., Zettl, A. and Whitney, M. (1999) “Thermal conductivity of single-walled carbon Nanotubes” Synthetic Metals, Vol. 103, 2498-2499 Iijima, S (1991) “Helical microtubules of graphitic carbon,” Nature (London), Vol. 354, 56. Iijima, S. and Ichihashi, T. (1993) “Single-shell carbon nanotubes of 1-nm diameter,” Nature (London), Vol. 363, 603. Iijima, S., Ajayan, P. M., Ichihashi, T. (1992) “Growth model for carbon nanotubes,” Phys. Rev. Lett., Vol. 69, 3100. Ivanov, V., Nagy, J. B.,. Lambin, P. H., Lucas, A., Zhang, X. B., Zhang, X.F., Bernaerts, D., Tendeloo, G. V., Amelinckx, S., Landuyt, J. (1994)“ The study of carbon nanotubules produced by catalytic method,” Chem. Phys. Lett., Vol. 223, 329. Jackson K. K.,J.Catherine N.,Gerald M. Sawula (2004) “Speciation studies of nickel and chromium in wastewater from an electroplating plant,” Talanta,64, 54-59 Jae-Woon Shim, Soo-Jin Park, Seung-Kon Ryu (2001), “Effect of modification with HNO3 and NaOH on metal adsorption by pitch-based activated carbon fibers”Carbon, Vol. 39,1635-1642. J. Paul Chen and Shunnian Wu (2004) “Acid/Base-Treated Activated Carbons: Characterization of Functional Groups and Metal Adsorptive Properties,” Langmuir , 20, 2233-2242 K. Kadirvelu , K. Thamaraiselvi, C. Namasivayam(2001), “Adsorption of nickel(II) from aqueous solution onto activated carbon prepared from coirpith,” Separation and Purification Technology, Vol 24.,497-505. Katoh R., Tasaka Y., Sekreta E., Yumura M., Ikazaki F., Kakudate Y. and Fujiwara S. (1999) “ Sonochemical production of a carbon nanotube” Ultrasonics Sonochemistry, Vol. 6, 185-187. Kong, J., Soh, H. T., Cassell, A. M., Quate, C. F., Dai, H. (1998)“Synthesis of individual single-walled carbon nanotubes on patterned silicon wafers,” Nature (London), Vol. 395, 878. Kroto, H. W., Heath, J. R., O’Brien, S. C., Curl, R. F., Smalley, R. E. (1985) “C60: buckminsterfullerene,” Nature, Vol. 318, 162. Li, W. Z., Xie, S. S., Qian, L. X., Chang, B. H., Zou, B. S., Zhou, W. Y.,Zhao, R .A., Wang, G. (1996) “Large-scale synthesis of alignedcarbon Nanotubes,” Science, Vol. 274, 1701. Li, Y. H., Di, Z., Ding , Z., Wu, D., Luan, Z., Zhu, Y. (2005) “Adsorption thermodynamic, kinetic and desorption studies of Pb2+ on carbon nanotubes, ”Water Research, Vol. 39, 605-609. Li, Y. H., Ding, J., Luan, Z., Di, Z., Zhu, Y., Xu, C., Wu, D. W. (2003) “Competitive adsorption of Pb2+ , Cu2+ , Cd2+ ions from aqueous solutions by multiwalled carbon nanotubes,” Carbon, Vol. 41, 2787-2792. Li, Y. H., Wang, S., Cao, A.(2001) “Adsorption of fluoride from water by amorphous alumina supported on carbon nanotubes,” Chemical Physics Letters, Vol. 350, 412-416. Li, Y. H., Wang, S., Luan, Z. (2003) “Adsorption of cadmium(Ⅱ)from aqueous solution by surface oxidized carbon nanotubes,” Carbon,Vol. 41, 1057-1062. Li, Y. H., Wang, S., Wei, J., Zhang, X., Xu, Cailu., Luan, Z., Wu, D., Wei,B.(2002) “Lead adsorption on carbon nanotubew,” Chemical Physics Letter, Vol. 357, 263-266. Li, Y. H., Wang, S., Zhang, X., Wei, J., Xu, C., Luan, Z., Wu, D.(2003) “Adsorption of fluoride from water by aligned carbon nanotubes,” Materials Research Bulletin, Vol. 38, 469-476. Long, R. Q. and Yang, R. T. (2001) “Carbon Nanotubes as Superior Sorbent for Dioxin Removal,” J. Am. Chem. Soc. Vol. 123, 2058-2059. M. C. Basso, E. G. Cerrella, and A. L. Cukierman (2002) “Activated Carbons Developed from a Rapidly Renewable Biosource for Removal of Cadmium(II) and Nickel(II) Ions from Dilute Aqueous Solutions,” Ind. Eng. Chem. Res., 41, 180-189 Mohammad Ajmal, Rifaqat Ali Khan Rao, Rais Ahmad, Jameel Ahmad (2000)., “Adsorption studies on Citrus reticulata (fruit peel oforange) : removal and recovery of Ni II from electroplating wastewater,” Journal of Hazardous Materials, Vol 79, 117-131 Ovejero, G.; Sotelo, J.L.; Romero, M.D.; Rodrzh_TW
dc.description.abstract本研究以奈米碳管吸附水中二價鎳離子,研究結果顯示。經由次氯酸鈉氧化改質後,奈米碳管表面的含氧官能基增加且表面呈負電性,所以奈米碳管親水性相對的提高而增加更多的吸附位址。在25oC下,Langmuir模式求取飽和吸附量,改質單壁奈米碳管碳管為47.85 mg/g,改質多壁奈米碳管為38.46 mg/g;其吸附量遠大於粉狀活性碳(16.29 mg/g)、粒狀活性碳 (14.53 mg/g)以及改質粒狀活性碳(26.39 mg/g)。在吸附動力學探討,符合擬二階動力模式(pseudo-second order kinetic model)。 不同pH值下,吸附量隨pH上升而提高。在不同溫度的吸附條件下,改質奈米碳管吸附量隨溫度上升而增加。而在熱力學的探討裡,改質奈米碳管的ΔHo <0、ΔSo >0、ΔGo <0,說明吸附屬於自發性吸熱反應,吸附過程以表面離子交換為主。經由初始濃度60 mg/L之鎳重金屬溶液吸附後碳管,以0.1M硝酸溶液在25oC下進行脫附再生,結果發現改質奈米碳管經10次脫附再生實驗後,改質單壁奈米碳管約有78.29%再生效率,為改質粒狀活性碳的6倍(12.94%),所以改質奈米碳管在脫附再生效能依然有很好的表現。綜合以上研究結果,奈米碳管對於處理水中二價鎳離子具有良好的應用潛力。zh_TW
dc.description.abstractSingle-walled carbon nanotubes (SWCNT) and multi-walled carbon nanotubes (MWCNT) were purified by sodium hypochlorite solutions and were employed as sorbents to study sorption characteristics of nickel (II) from aqueous solution. The surface properties of purified CNTs such as functional groups, total acidities and negatively charged surface carbon were greatly improved after purification and thus resulted in sorption of more Ni2+. The Ni2+ removal by CNTs quickly increased with initial solution pH in the range 1-12 and temperatures. The thermodynamic analysis revealed that the Ni2+ sorption by CNTs is endothermic and spontaneous. The sorption/desorption study showed that the Ni2+ could be easily removed from the CNTs surface by a 0.1 M HNO3 solution and the sorption capacity was maintained after 10 cycles of sorption/desorption process. A comparative study on the Ni2+ sorption between CNTs and activated carbons was also conducted. The maximum Ni2+ sorption capacities of Purified-SWCNT, Purified-MWCNT, Purified-GAC, PAC and GAC calculated by the Langmuir model are 47.85, 38.46, 26.39, 16.29 and 14.53 mg/g, respectively, with an initial Ni2+ concentration range 10 - 80 mg/L. The shorter equilibrium time as well as the better sorption capacity as compared to activated carbons suggests that both possess highly potential applications for the removal of Ni2+ from aqueous solution.en_US
dc.description.tableofcontents目錄 摘要 i Abstract ii 目錄 iii 圖目錄 vii 表目錄 xi 第一章 緒論 1 1-1 緣起與研究動機 1 1-2 研究目的 2 1-3 研究內容 3 第二章 文獻回顧 5 2-1 重金屬對環境的影響 5 2-1-1 鎳的來源及其危害特性 5 2-1-2重金屬鎳在水體中之分布 6 2-2 吸附現象與吸附種類 10 2-2-1 吸附理論 10 2-2-2 吸附現象 10 2-2-3 物理吸附 11 2-2-4 化學吸附 12 2-2-5 影響吸附之因素 13 2-2-6 背景離子強度之影響 15 2-3 吸附模式理論 16 2-3-1 等溫吸附模式 16 2-3-2 動力吸附模式 18 2-4 奈米碳管簡介 20 2-4-1 奈米碳管發展歷史 20 2-4-2 奈米碳管的結構 21 2-4-3 奈米碳管的特性與產業應用 22 2-4-4 奈米碳管的製備與合成 25 2-4-5 奈米碳管之純化方法 30 2-4-6 探討奈米碳管去除無機重金屬污染物 32 2-4-7 探討奈米碳管去除其他污染物 34 2-4-8 吸附分離技術與環境工程運用 35 第三章 研究材料與方法 37 3-1 實驗材料與與試藥 37 3-1-1 吸附材料 37 3-1-2 實驗試藥與材料: 38 3-2 儀器設備與分析方法 39 3-2-1 實驗裝置 39 3-2-2 吸附材表面特性分析方法介紹 40 3-2-2-1 比表面積分析儀 40 3-2-2-2 傅立葉轉換紅外光譜儀 41 3-2-2-3 界達電位分析儀 43 3-2-2-4 熱重量分析儀 44 3-2-2-5 表面含氧官能基定量分析 44 3-3 重金屬樣品分析方法與設備 45 3-4 本研究實驗概述 46 3-5 實驗方法程序 48 3-5-1 次氯酸鈉氧化改質奈米碳管實驗 48 3-5-2 奈米碳管劑量及震盪頻率影響之實驗 51 3-5-3 吸附動力實驗 52 3-5-4 等溫吸附平衡實驗 52 3-5-5 離子強度影響與不同pH值之吸附平衡實驗 53 3-5-6 不同溫度之吸附動力實驗及等溫吸附實驗 54 3-5-7 脫附再生實驗 55 3-5-8 兩種重金屬離子之競爭性吸附評估 56 第四章 結果與討論 57 4-1 奈米碳管改質前後物化特性分析 57 4-1-1比表面積與孔洞分佈分析 57 4-1-2熱重量分析 61 4-1-4傅立葉轉換紅外線光譜分析 63 4-1-5界達電位分析 65 4-1-6表面含氧官能基定量分析 67 4-2奈米碳管吸附重金屬批次實驗 68 4-2-1吸附劑劑量及震盪頻率影響之吸附實驗 68 4-2-2吸附動力實驗 70 4-2-3等溫吸附平衡實驗 71 4-2-4 離子強度影響與不同pH值之吸附平衡實驗 75 4-2-4-1 離子強度影響 75 4-2-4-2 不同pH值條件之吸附平衡實驗 76 4-2-5 不同溫度下動力吸附實驗 79 4-2-6 吸附動力學之探討 80 4-2-7 不同溫度下之等溫吸附平衡實驗 89 4-2-8 吸附熱力學之探討 93 4-3 奈米碳管與活性碳吸附效能比較 95 4-4 脫附再生實驗 101 4-4-1 脫附再生液濃度對再生效率影響 101 4-4-2 脫附時間對再生效率影響 102 4-4-3 多次脫附再生實驗之探討 103 4-4-4 經濟效益評估 107 4-5 競爭吸附實驗 110 第五章 結論與建議 115 5-1 結論 115 5-2 建議 117 參考文獻 119 中文部份 119 英文部分 120 圖目錄 圖2-1 重金屬(a)鎳、(b)鋅在不同pH值條件下之物種分佈圖 9 圖2-2 吸附系統的關係 (Furuy et al.,1997) 11 圖2-3 富勒希 (Fullerene) C60結構 20 圖2-4 CNT結構 (Iijima, 1991) 21 圖2-5 單壁、多壁奈米碳管TEM 影像 (Iijima, 1991) 21 圖2-6 SWCNT三種不同結構 22 圖2-7 CNTs於產業上的應用 (蔡氏,2005) 24 圖2-8 CNTs成長機制模擬圖 25 圖3-1 批次實驗震盪器 39 圖3-2 研究架構 46 圖3-3 批次震盪實驗流程 47 圖3-4 CNTs改質之熱處理流程 48 圖3-5 CNTs改質之氧化處理流程 49 圖3-6 CNTs改質之過濾處理流程 50 圖4-1 單壁奈米碳管中孔(Mesopore)孔洞分佈 59 圖4-2 多壁奈米碳管中孔(Mesopore)的洞分佈 59 圖4-3 單壁奈米碳管微孔(Micropore)孔洞分佈 60 圖4-4 改質多壁碳管微孔(Micropore)孔洞分佈 61 圖4-5 單壁奈米碳管TGA圖譜分析 62 圖4-6 多壁奈米碳管TGA圖譜分析 62 圖4-7 單壁奈米碳管之FT-IR 分析 64 圖4-8 多壁奈米碳管之FT-IR 分析 64 圖4-9 奈米碳管結構缺陷部份產生-COOH官能基 65 圖4-10 不同pH值下奈米碳管之界達電位 66 圖4-11 劑量影響之吸附曲線 69 圖4-12 震盪頻率影響之吸附曲線 70 圖4-13 Purified-SWCNT動力吸附曲線 72 圖4-14 Purified-MWCNT動力吸附曲線 73 圖4-15 奈米碳管等溫吸附曲線 73 圖4-16 離子強度影響之吸附曲線 75 圖4-17 Purified-SWCNT不同pH值條件對吸附影響 77 圖4-18 Purified-MWCNT不同pH值條件對吸附影響 78 圖4-19 吸附前後pH值變化情形 78 圖4-20 Purified-SWCNT於不同溫度下之動力吸附曲線 83 圖4-21 Purified-MWCNT於不同溫度下之動力吸附曲線 84 圖4-22 不同溫度下Purified-SWCNT擬一階動力模式 85 圖4-23 不同溫度下Purified-MWCNT擬一階動力模式 86 圖4-24 不同溫度下Purified-SWCNT擬二階動力模式 87 圖4-25 不同溫度下Purified-MWCNT擬二階動力模式 88 圖4-26 Purified-SWCNT在不同溫度下之吸附曲線 91 圖4-27 Purified-MWCNT在不同溫度下之吸附曲線 92 圖4-28 Purified-CNTs吸附Ni2+之ln b與 1/T線性迴歸圖 94 圖4-29 GAC改質前後孔洞分佈 97 圖4-30 GAC改質前後之FT-IR分析 98 圖4-31 PAC動力吸附曲線 98 圖4-32 GAC動力吸附曲線 99 圖4-33 Purified-GAC動力吸附曲線 99 圖4-34 活性碳等溫吸附曲線 100 圖4-35 不同脫附再生液濃度對再生效率之影響 102 圖4-36 脫附再生時間對再生效率之影響 103 圖4-37 Purified-CNTs及Purified-GAC脫附再生吸附量比較 106 圖4-38 Purified-CNTs及Purified-GAC脫附再生效率比較 106 圖4-39 Purified-CNTs及Purified-GAC脫附後重量損失比較 107 圖4-40 Purified-CNTs及Purified-GAC經濟效應回歸曲線 109 圖4-41在不同吸附量下預估Purified-CNTs水處理再生次數 109 圖4-42 Ni2+與Zn2+單一重金屬離子等溫吸附曲線 110 圖4-43 不同Ni2+濃度對Purified-CNTs吸附Zn2+之影響 113 圖4-44 不同Zn2+濃度對Purified-CNTs吸附Ni2+之影響 113 圖4-45 Purified-SWCNTs吸附Ni2+、Zn2+競爭吸附曲線 114 圖4-46 Purified-MWCNTs吸附Ni2+、Zn2+競爭吸附曲線 114 表目錄 表2-1 國內飲用水重金屬鎳含量及地下水重金屬管制標準 6 表2-2 鎳離子的水解平衡常數β’(log β) (Smith et al.,1976) 8 表2-3 物理吸附與化學吸附之比較 13 表2-4 CNTs主要合成技術 28 表2-5 其他CNTs合成技術 29 表2-6 CNTs純化方法優缺點比較 32 表2-7 其他吸附材對Ni2+ 吸附之文獻 36 表3-1 CNTs之物理性質 37 表3-2 活性碳之物理性質 38 表3-3 不同波長下官能基分佈圖 42 表3-4 FAAS分析操作條件 45 表4-1 奈米碳管表面物理特性分析 58 表4-2 奈米碳管含氧官能基定量分析 67 表4-3 奈米碳管之等溫吸附模式參數值 74 表4-4 吸附前後pH值的變化 74 表4-5 Purified-CNTs於不同溫度下之一階動力zh_TW
dc.subjectCarbon nanotubesen_US
dc.subjectactivated carbonsen_US
dc.titleA study on the sorption of nickel(II) from water with purified carbon nanotubesen_US
dc.typeThesis and Dissertationzh_TW
Appears in Collections:環境工程學系所


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.