Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/5168
標題: 淋洗對污染農地重金屬的去除效果及其對土壤肥力之衝擊
The effect of leaching on heavy metal removal and fertility change of farmland soil
作者: 朱育賢
Ju, Yu-Shien
關鍵字: Heavy metal
重金屬
Leaching
Hydrochloric acid
sequential extraction procedure
淋洗
鹽酸
逐步萃取
植體分析
出版社: 環境工程學系所
引用: Allen H. E., (1995). "Metal speciation and contamination of soil", Lewis Publishers. Alloway, B. J., (1995) "Soil processes and the behaviour of heavy metals" Heavy metals in soils, John Wiley & Sons, New York, pp. 11-35. Barber, D. A. and Martin J. K. (1976). "The release of organic substances by cereal roots in soil." New phytologist. 76: 69-80. Bohn, H. L., McNeal, B. L. and O’Connor, G. A., (2001) Soil Chemistry. John Wiley & Sons, New York. Brewster, M., Peters R., Patton T., and Martino L. (1994). "Treatability study for evaluating treatment of metals-contaminated soil". Paper presented at the Industrial and Engineering Chemistry Special Symposium on Emerging Technologies in Hazardous Waste management VI. September 19-21: 436-439. Calmano, W., Forstner U., and Kersten M., (1986). "Metal associations in anoxic sediments and change following upload disposal." Environmental Toxicology and Chemistry 12: 313-321. Chen Y. X., Q. Lin, Y. M. Luo, Y. F. He, S. J. Zhen, Y. L. Yu, G.M. Tian, M. H. Wong, (2003). "The role of citric acid on the phytoremediation of heavy metal contaminated soil." Chemosphere 50: 807-811. Cline, S. R. and Reed B. E. (1995). "Lead removal from soils via bench-scale soil washing techniques." Journal of Environmental Engineering 121(10): 700-705. Hue, N. V. (1991). "Effects of organic acids/anions on P sorption and phytoavailability in soils with different mineralogies." Soil Science 152: 463-471. Jozefaciuk G., A. Muranyi, T,Alekseeva (2002). "Effect of extreme acid and alkali treatment on soil variable charge." Geoderma 109: 225-243. Mann, M. J. (1999). "Full-scale and pilot-scale soil wash." Journal of Hazardous Materials 66: 119-136. Martell, E. and Smith R. M.. (1989). Critical stability constants. New York, Plenum Press. Peter, R. W. and L. Shem (1995). Treatment of soils contaminated with heavy metals, Lewis Publishers. Pichtel, J. and T. M. Pichtel (1997). "Comparison of solvents for ex situ removal of chromium and lead from contaminated soil." Journal of Environmental Engineering & Science 14(2): 97-104. Reed, Brian E., Patrick C. Carriere, and RodericMoore (1996). "Flushing of Pb(II) contaminated soil using HCl, EDTA and CaCl2." Journal of Environmental Engineering: 48-50. Roche, E. G., J. Doyle, and C. J. Haigh (1994). "Decontamination of site of a secondary zinc smelter in Torrance California,." Proceedings of Hydrometallurgy: 1035–1048. Semer, R. and K. R. Reddy (1996). "Evalution of soil washing process to remove mixed contaminants from a sandy loam." Journal of Hazardous Materials 45: 45-57. Stumm, W. and J. J. Morgan (1996). Aquatic chemical kinetics :reaction rates of processes in natural waters. New York, A Wiley-Interscience publication. Sutherland, R. A. and F. M. G. Tack (2003). "Fractionation of Cu, Pb and Zn in certified reference soils SRM 2710 and SRM 2711 using the optimized BCR sequential extraction procedure." Advances in Environmental Research 8: 37-50. Tampouris S., Papassiopi N., and I. Paspaliaris (2001). "Removal of contaminant metals from fine grained soils, using agglomeration, chloride solutions and pile leaching techniques." Journal of Hazardous Materials B84: 297-319. Tessier, A., P. C. Campbell, and M. Bisson (1979). "Sequential Extraction Procedure for the speciation of Particulate Trace Metals." Analytical Chemistry 51: 844-850. Ton, S., J. J. Defino, and H. T. Odum (1993). "Wetland retention of lead from a hazardous site." Billetin of Environmemtal Contamination and Toxicology 51: 430-437. Veeken, A. H. M. and Hamelers H. V. M. (1999). "Removal of heavy metals from sewage sludge by extraction with organic acids." Water Science and Technology 40: 129-136. 方英傑 (1995). 土壤分析手冊. 台北, 中華土壤肥料學會. 行政院環境保護署,「土壤中陽離子交換容量-醋酸鈉法」,環署檢字第00529號(1994)。 行政院環境保護署,「沈積物、污泥及油脂中金屬元素總量之檢測方法-微波消化原子光譜法」,環署檢字第0910014627號(2002b)。 行政院環境保護署,「土壤中重金屬檢測方法-王水消化法」,環署檢字第0920047102號(2003)。 何念祖、孟賜福 (1987). 植物營養原理, 上海科學技術出版社. 郭魁士 (1980). 土壤學. 台北市, 中國書局. 陳育民 (1999). 重金屬污染土壤利用鹽酸及檸檬酸之化學移除方法. 國立中興大學土壤環境科學系. 碩士論文. 陳錕榮 (2000). 重金屬污染場址調查與復育技術評估之研究. 國立雲林科技大學環境與安全工程技術研究所. 碩士論文. 黃俊憲 (2004). 污染農地中鎘的去除. 國立中興大學環境工程學系. 碩士論文. 黃裕銘,戴佳如,陳育民 (2005). 酸洗法地力回復之認證標準與問題. 污染農地土壤整治後地力回復研習會論文集. 中華土壤肥料學會(CSSFS). 劉鎮宗 (1996). "土壤中有毒重金屬的清道夫." 環境工程會刊 7(1). 歐育憲 (2000). 土壤中重金屬汙染物之生物有效性意義研究. 逢甲大學環境工程與科學研究所. 碩士論文. 蘇惠靖 (2001). 以萃取法復育受重金屬污染土壤之可行性評估. 國立屏東科技大學環境工程與科學系. 碩士論文.
摘要: 本研究探討受重金屬污染農地經淋洗處理後土壤性質之改變,包括土中重金屬含量及其存在型態、土壤質地之變化,以及土壤肥力流失情形等,並以處理後土樣種植蔬菜,分析採收後植體中重金屬濃度,藉以評估淋洗處理法復育高濃度重金屬污染土壤之可行性。 彰化地區和美土除了鉛、鎳之外,鎘(13.59 mg/kg)、鉻(422.8 mg/kg)、銅(284.8 mg/kg)、及鋅(2050 mg/kg)之含量皆超過一般用地管制標準值,屬於高濃度污染之土壤。於本實驗中利用0.1 M鹽酸(HCl)、0.1 M 鹽酸加0.02 M 檸檬酸、0.02 M檸檬酸及0.02 M檸檬酸加0.05 M氯化鈣四種試劑,不同淋洗液固比(5、10)進行小管柱淋洗。結果發現以液固比10狀況下,去除效果最佳,除了單一試劑檸檬酸效果不佳之外,其餘三種試劑均可將污染重金屬濃度降至法規值以下;且部分實驗發現,添加檸檬酸有助於重金屬鉻的去除。 比較淋洗前後土樣之性質差異,三種試劑中,以檸檬酸/氯化鈣試劑對土壤改變程度最低。土壤基本性質改變方面,除了鹽酸/檸檬酸淋洗後之土壤pH較其他試劑淋洗後之土壤pH來得低。其他性質包含土壤質地、有機碳含量、陽離子交換容量等淋洗前後變化幅度不大(增減幅度約在10%以內)。而土壤肥力方面,交換性鈣、鎂、鉀及微量元素含量在淋洗後皆較淋洗前來得少,其中大致又以鹽酸/檸檬酸淋洗的流失情況較為嚴重,可知該試劑對土壤肥力之破壞性較大,也會增加日後土地改良時添加肥料之使用劑量。 將淋洗後的土樣以逐步萃取進行分析,經淋洗過後,銅、鋅、鉻於生物有效性部分含量增加,表示環境風險增加,但實驗結果亦發現,添加氯化鈣的處理有助於降低生物有效性含量。 種植實驗結果發現,以鹽酸處理之土樣所種植所得到的蔬菜具有較好的存活率,且具有較高的產量。但植體中重金屬以鹽酸/檸檬酸處理含量最低,鹽酸次之,檸檬酸/氯化鈣最差,若添加一定量之有機質比較發現,添加實驗可降低植體重金屬含量,故於整治後之土樣,添加有機質有其之必要性。 綜合本實驗研究結果,進行土壤重金屬整治前,需考慮淋洗(萃取)試劑的使用,若如果進行本實驗所選用土樣,並考慮固定固液比之下進行淋洗,鹽酸試劑不但對重金屬去除效果良好,且植株生長情形為四種酸處理最佳,固推薦使用之,唯獨經鹽酸淋洗後,土壤酸化過於嚴重,須再加入大量土壤改質劑以調整土壤酸鹼。
Four leaching solution(0.1 M HCl, 0.02M Citric acid(CA), 0.1 M HCl+0.02 M CA(HCl/CA), 0.02 M CA+0.05 M CaCl2(CA/CaCl2)) were used to leach the heavy metal contaminated farmland soil, The heavy metal removal efficiency and the soil properties change were studied. The metal removal efficiency of citric acid is the worst. They are 87-95% for Cd, 75-81% for Zn, 45-81% for Cu, 30-60% for Cr for other three leaching solution, HCl and HCl/CA have better leaching efficiency for Cd and Cu. However, HCl/CA and CA/CaCl2 are better for removing Cr. Exchange K, Ca, Mg and plant available Al and Mn are also decrease a lot after leaching except Ca leached by CA/CaCl2. After leaching, the pH value of soil change from original 6.4 to the range of 3.2 to 4.6, CEC change from 18.7 cmol/kg to the range of 19 to 21 cmol/kg, organic C from 31.8 g/kg to the range of 33 to 36 g/kg, clay ratio from 20.8% to the range of 19.4 to 21.6%. The founded type of metal in soil was studied following Tessier's sequential extraction, protocol, Cadmium originally exists mainly in the exchangeable, carbonated bound and Fe-Mn oxide bound states, Zinc, Cu and Cr are originally mainly in Fe-Mn oxide and organic states, after leaching, most of Zn, Cu and Cr in exchange state were increase. After complementing with lime and fertilizer, soils are seeded with selected vegetable. All of the heavy metals in the grown vegetable are below the regulated standards except for copper in vegetable grown on calcium chloride / citric acid treated soil.
URI: http://hdl.handle.net/11455/5168
其他識別: U0005-1708200617140700
文章連結: http://www.airitilibrary.com/Publication/alDetailedMesh1?DocID=U0005-1708200617140700
Appears in Collections:環境工程學系所

文件中的檔案:

取得全文請前往華藝線上圖書館



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.