Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/5174
標題: 利用頂空固相微萃取法探討不同化學物質生成三鹵甲烷之研究
Investigation of THMs formation from different chemical matters by HS-SPME
作者: 蔡弦謙
Tsai, Hyun- Chen
關鍵字: chloroform formation rate
三鹵甲烷生成速率
headspace solid-phase microextration
humic acid
fulvic acid.
頂空固相微萃取
腐植酸
黃酸
出版社: 環境工程學系所
引用: Abdullah, M. P., Yew, C. H., Ramli, M. S.b., “Formation, modeling and validation of trihalomethanes (THM) in Malaysian drinking water: a case study in the districts of Tampin, Negeri Sembilan and Sabak Bernam, Selangor, Malaysia”. Water Res., 37, 4637-4644 (2003). Adin, A., Katzhendler, J., Alkaslassy, D. and Rav-Acha, C., “Trihalomethane formation in chlorinated drinking water : a kinetic model”, Water Res., 25, 797-805 (1991). Attias, L., A. Contu, A. Loizzo, M. Massiglia, P. Valente and G. A. Zapponi, “Trihalomethanes in drinking water and cancer: risk assessment and integrated evaluation of available data, in animals and humans”, Sci. Total Environ.,, 171, 61-68 (1995). Babcock, D. B. and Singer., P. C., “Chlorination and coagulation of humic and fulvic acids”, JAWWA, 71, 149-152 (1979). Batterman, S., Zhang, L. and Wang, S., “Quenching of chlorination disinfection by-product formation in drinking water by hydrogen peroxide”, Water Res., 34, 1652-1658 (2000). Bull, R. J., “Health effect of drinking water disinfectants and disinfection by-products, Env. Sci. Tech., 16, 554-561(1982). Bull, R. J., Linad, S. B., Kenneth, P. C., Jano, B. R., Byron, E. B., Rex, P. and Juoko, T., “Symposium overview water chlorination:Essential process or cancer hazard”, Fundam. and Appl. Toxic., 28, 155-166 (1995). Calace, N., M. Capolei, M. Lucchese and B. M. Petronio, “The structural composition of humic compounds as indicator of organic carbon sources”, Talanta, 49, 277-284 (1999). Chaidou, C. I., V. I. Georgakilas, C. Stalikas, M. Saraci and E. S. Lahaniatis, “Formation of chloroform by aqueous chlorination of organic compounds”, Chemosphere, 39, 587-594 (1999). Chang, C. N., C. F. Hsu, A. C. Chao and J. G. Lin, “Characteristics of the DBPs and process control techniques of the disinfection process using pre-ozonation and post-chlorination”, Water Supply, 13, 95-100 (1995). Chang, E. E., P. C. Chiang and T. F. Lin, “Development of Surrogate Organic Contaminant parameters for source water quality standards in Taiwan”, Chemosphere, 37, 593-606 (1998). Chen, M. L., Mao, I. F. and Hsu, C. C., “Determination of trihalomethanes in drinking water by Solid-Phase Microextraction and Gas Chromatography with Electron-Captured detection”, Toxic. Environ. Chem., 60, 39-45 (1997). Cho, D. H., Kong, S. H. and Oh, S. G., “Analysis of trihalomethanes in drinking water using headspace-SPME technique with gas chromatography”, Water Res., 37, 402-408 (2003). Clesceri, L. S., Greenberg, A. E. and Eaton, A. D., “Standard Methods for The Examination of Water and Wastewater”, 20th Edition, 6232 B. Liquid-Liquid Extraction, AWWA WEF, ISBN 0-87553-235-7, 6-36 (1998). Clesceri, L. S., Greenberg, A. E. and Eaton, A. D., “Standard Methods for The Examination of Water and Wastewater”, 20th Edition, 4500-Cl B. Iodometric Method I, AWWA WEF, ISBN 0-87553-235-7, 4-55 (1998). Clesceri, L. S., Greenberg, A. E. and Eaton, A. D., “Standard Methods for The Examination of Water and Wastewater, 20th Edition”, 5310 D. Wet-oxidation Method, AWWA WEF, ISBN 0-87553-235-7, 5-24 (1998). Eisert,R. and Levsen, K., “Solid-phase microextraction coupled to gas chromatography: a new method for the analysis of organics in water”, J. Chromatogr. A, 733, 143-157 (1996). Fantuzzi, G., Righi, E., Predieri, G., Ceppelli, G., Gobba, F. and Aggazzotti, G., “Occupational exposure to trihalomethanes in indoor swimming pools”, Sci. Total Environ., 264, 257-265 (2001). Gallard, H. and Gunten, U. V., “Chlorination of natural organic matter : kinetic of chlorination and of THM formation”, Water Res., 36, 65-74 (2002). Golfinopoulos, S. K., “The occurrence of trihalomethanes in the drinking water in Greece”, Chemosphere, 41, 1761-1767 (2000). Hsu, C. H., Jeng, W. L., Chien, R. M., and Han, B. C., ”Estimation of potential lifetime cancer risks for trihalomethanes from consuming chlorinated drinking water in Taiwan”, Environ. Res., 85, 77-82(2001). Jimenez, M., C. S., Dominguez, A. P., and Solverio, J. M. C. “Reaction kinetics of humic acid with sodium hypochlorite.” Water Res., 27, 815-820 (1993). Krasner, S. W., Mcguire, M. J., Jacangelo, J. G., Patania, N. L., Reagen, K. M. and Aieta, E. M., “The occurrence of disinfection by-products in US drinking water”, JAWWA, 81, 41-53 (1989). Krasner, S. W., Groue, J. P., Buffle, J. and Perdue, E. M., “Three approaches for characterizing NOM”, J. AWWA., 88, 66-79 (1996). King, W. D., Dodds, L. and Allen, A. C., “Relation between stillbirth and specific chlorination by-products in public water suppliers” , Environ. Health Perspect., 108, 883-886 (2000). Laniewski, K., H. Borén and A. Grimvall, “Fractionation of Halogenated Organic Matter Present in Rain and Snow”, Chemosphere, 38, 393-409 (1999). Lord, H. L. and Pawliszyn, J., “Method optimization for the analysis of amphetamines in urine by solid-phase microextraction”, Anal. Chem., 69, 3899-3906 (1997). Marhaba, T. F. and Van, D., “The variation of mass and disinfection by-product formation potential of dissolved organic matter fractioins along a convention surface water treatment plant, J. Hazaed. Mater.,74, 133-147 (2000). Mestres, M., Busto, O. and Guasch, J., “Headspace solid-phase microextraction analysis of volatile sulphides and disulphides in wine aroma”, J. Chromatogr.A, 808, 211-218 (1998). Mohamed, A. El-Dib and Ali, R. K., “THMs formation during chlorination of raw NILE river water” , Water Res., 29, 375-378 (1995). Morris, R. D., Audet, A. M., Angelillo, I. F., Chalmers, T. C. and Mosteller, F., “ Chlorination, chlorination by-products, and cancer : a meta-analysis”, Am. J. Public Health, 82, 955-963 (1992). Nikolaou, A. D., Golfinopoulos, S. K., Arhonditsis, G.B., Kolovoyiannis, V., Lekkas, T. D., “Modeling the formation of chlorination by-products in river waters with different quality”, Chemosphere, 55, 409-420 (2003). Nikolaou, A. D., Lekkas, T. D. and Golfinopoulos, S. K., “Kinetics of the formation and decomposition of chlorination by-products in surface waters”, Chem. Eng. J., 100, 139-148 (2004). Otson, R. and William, D. T., “Headspace chromatographic determination of water pollutions”, Anal. Chem., 54, 942 (1982). Pawliszyn, J., “Solid phase microextraction with thermal desorption using fused silica optical fiber”, Anal. Chem., 62, 2145-2148 (1990). Pawliszyn, J., “Solid phase microextraction:theory and practice”, Wiley-VCH, Inc., Canada (1997). Robert M. Clark., “Chlorine demand and TTHM formation kinetics: a second-order model”, J. Environ. Eng., 16-24 (1998). Rodriguez, M. J. and Serodes, J., “Spatial and temporal evolution of trihalomethanes in three water distribution system”, Water Res.,35, 1572-1586 (2001). Rook, J. J., “Formation of haloforms during chlornation of natural waters”, Water Treat. Exam., 23, 234-242 (1974). Santos, F., Galcern, M. and Fraisse, D., “Application of solid-phase microextraction to the analysis of volatile organic compounds in water”, J. Chromatogr. A, 742, 181-189 (1996). Shin, D., Chung, Y., Kim, J., Park, Y and Kum, H., “Assessment of disinfection by-products in drinking water in Korea”, J. Expo. Anal. Environ. Epidemiol., 9,192-199 (1999). Singer, P. C., “Humic Substances as Precursors for Potentially Harmful Disinfection By-products”, Water Sci. Tech., 40, 25-30 (1999). Stack, M. A., Fitzgerald, G., O’Connell, S. and James, K. J., “Measurement of trihalomethanes in potable and recreation waters using solid phase micro extraction with gas chromatography-mass spectrometry”, Chemosphere, 41, 1821-1826 (2000). Stevens, A. A., Slocum, C. J., Seeger, D. R. and Robeck, G. G., “Chlorination of organics in drinking water”, JAWWA, 11, 615-620 (1976). SUPELCO, Supelco Chromatography products, 3223 (1998). Thackston, E. L., Wilson, D. J., Hanson, J. S. and Miller, D. L., “Lead removal with adsorbing colloid flotation”, J. Water Pollut. Control Fed., 52, 317 (1980). Thurman, E. M., “Organic Geochemistry of Natural Water”, Martinus Nijhoff / Dr. W.Junk Publisher, Dordrecht, The Netherlands (1985). Zhao, R. S., Lao, W. J. and Xu, X. B., “ Headspace liquid-phase microextraction of trihalomethanes in drinking water and their gas chromatographic determination” , Talanta, 62, 751-756 (2004). 方文虹,“疏水性有機酸對二氧化氯消毒反應其副產物生成之研究”,中興大學環工系研究所碩士論文(1998)。 行政院環境保護署:水中總三鹵甲烷檢測方法-吹氣捕捉氣相層析法。環境檢測方法彙編W781.50A,(1994)。 林逸彬,“配水系統中消毒副產物生成模式”,台灣大學環境工程學研究所碩士論文(1999)。 林恆毅,“以固相微萃取法(SPME)配合GC-ECD分析水樣中多氯聯苯”,清華大學化學研究所碩士論文(2000)。 林坤樟,“利用頂空固項為萃取法探討水中三鹵甲烷生成速率的可行性”,中興大學環境工程研究所碩士論文(2005)。 吳家興,“臺灣地區水庫水源特性分佈及消毒副產物生成潛能之探討”- ,東海大學環境科學研究所碩士論文(1999) 洪慧鈞,“水庫優養化評估指標與優養化水體三鹵甲烷生成潛勢之探討”,中興大學環工系研究所碩士論文(2002)。 涂雅芬,“模擬腐植酸官能基與含氯氧化劑反應生成揮發性有機物質的動力學研究”,靜宜大學應用化學研究所碩士論文(1993)。 陳奕卉,“以頂空固相微萃取技術分析水中微量三鹵甲烷”,台灣大學公共衛生學院環境衛生研究所碩士論文(2001)。 陸佩芬,“連續吹氣/吸附劑捕捉/氣相層析質譜儀線上偵測水中三鹵甲烷”,台灣大學化學研究所碩士論文(2002)。 張鎮南 馬英石 “台灣飲用水源加氯生成消毒副產物之研究” 自來水會刊第十六卷第三期,(1997)。 黃寶慧、李茂榮,“固相萃取技術”,Chemistry DEC.,第五十六卷第四期,319-326,(1998)。 黃敬德、謝有容,“固相微萃取技術之原理及其應用”,化學,第五十六卷,第四期,313-318,(1998)。 柯清水,“新世紀化工化學大辭典”,正文書局有限公司,(2000)。 蔡美純,“從水中天然有機物官能基變化探討前臭氧/粒狀活性碳反應機制”,東海大學環境科學系研究所碩士論文(2002)。 薛韻國,“頂空固相微萃取法分析垃圾焚化灰飛中多氯聯苯之研究”,中興大學環境工程研究所碩士論文(2004)。 樓基中,“淨水系統單元操作對三鹵甲烷之去除機制與生成模式之研究”,台灣大學環境工程研究所博士論文(1987)。 樓基中,蔣本基,“飲用水中腐植酸氯化反應生成機制之研究”,中國環境工程學刊第一卷第二期,57-64,(1991)。
摘要: 自然水體加氯消毒會產生氯化消毒副產物(chlorination by-products, CBPs),主要的消毒副產物有三鹵甲烷(trihalomethanes, THMs)、鹵乙酸(haloacetic acid, HAAs)等。影響三鹵甲烷生成量的因素有很多,主要為:有機物的種類、濃度、反應環境的溫度、pH值、加氯劑量及反應時間等。 本研究針對腐植酸、黃酸萃取液與其他一些化學物質( 間苯二酚、對苯二酚、2,4,5-三氯酚、丙酮)等三鹵甲烷前驅物質進行加氯反應之研究;反應過程中控制的變因有:反應物種類、溫度、氯劑量及pH值等。實驗配製單瓶水樣以頂空固相微萃取法依不添加去氯劑(Na2SO3)之方式,於分析時間點萃取採樣並利用GC/ECD分析、定量。 氯仿生成量的結果顯示:同為2 mg C/L濃度的腐植酸、黃酸萃取液,腐植酸之氯仿產生量較高(95.2 μg/L;43 μg/L);其他的純化合物則以苯二酚類(間苯二酚、對苯二酚)有較高的氯仿產量。實驗數據估算不同化合物於30℃之反應速率常數各別為:腐植酸(k=0.025 hr-1)、黃酸萃取液(k=0.017 hr-1)、間苯二酚 (k=0.23 hr-1)、丙酮(k=0.022 hr-1)。化合物生成氯仿之活化能則為:腐植酸(Ea= 2.5 kcal/mole)、黃酸萃取液(Ea= 8.9 kcal/mole)、間苯二酚(Ea= 10.5 kcal/mole)。 氯劑量濃度(2.5、5、10 mg Cl2/L)與氯仿之生成呈正相關,施加的氯劑量越多氯仿生成量越多;腐植酸、間苯二酚、丙酮之氯仿生成量隨反應環境pH(pH5.0、7.0、9.0)增加而增加。
Chlorination for natural waters has lead to the formation of disinfection by-products (DBPs), such as trihalomethanes and haloacetic acids. Factors affecting the formation of THMs during chlorination have been found to be the kinds and content of organic precursors and other parameters including temperature, pH, dose of chlorine and contact time between chlorine and organic compound. These factors were studied in this paper. This study aimed to some organic compounds (i.e., humic acid, fulvic acid, resorcinol, hydroquinone, 2,4,5-trichlorophenol and acetone) to investigate their chloroform formation characteristics. The single-vail headspace microextration technique (HS-SPME) coupled with gas chromatograph equipped with electron capture detector (GC-ECD) was used to continuously monitor the formation of chloroform without dechlorination in the reaction vial. Based on pseudo-first order reaction the reaction rate constants of the studied organic matters were: humic acid, k=0.025 hr-1; fulvic acid , k=0.017 hr-1; resorcinol, k=0.23 hr-1; hydroquinone, k=0.032 hr-1; 2,4,5-trichlorophenol, k=0.303 hr-1 and acetone, k=0.022 hr-1. By Arrhenius equation the activation energy(Ea)for chloroform formation of each compound was as follows: humic acid, Ea=2.5 kcal/mol; fulvic acid, Ea=8.9 kcal/mol; resorcinol, Ea=10.5 kcal/mol. In addition, the results showed the chloroform yield gradually increases with the increase of chlorine dosage, the temperature, and the content of the organic compound. The effect of pH on the yield of chloroform formation is different for different compound.
URI: http://hdl.handle.net/11455/5174
其他識別: U0005-1808200611584000
文章連結: http://www.airitilibrary.com/Publication/alDetailedMesh1?DocID=U0005-1808200611584000
Appears in Collections:環境工程學系所

文件中的檔案:

取得全文請前往華藝線上圖書館



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.